Article
  • Rubber Compounds with High Gas Barrier Property by Mixing Nylon 6 to Maleic Anhydride Grafted ENR 50
  • Lim JH, Cho UR
  • 무수 말레인산으로 그래프트된 ENR 50에 Nylon 6를 혼합한 기체 고차단성 고무 배합물
  • 임종혁, 조을룡
Abstract
The ENR 50 having the lowest gas permeability was blended with Nylon 6 which exhibits superior gas permeability, excellent wear resistance by using a twin-screw extruder. The blended materials showed the increased gas barrier property and physical properties, but did not yield a great synergistic effect due to low dispersion of Nylon 6 to ENR 50. To improve dispersion of Nylon 6 in the rubber matrix, maleic anhydride (MAH) was grafted to ENR 50. The grafting reaction between MAH and ENR 50 was evidenced using IR spectroscopy. The grafted and blended materials, ENR 50-g-MAH/Nylon 6 compounds, resulted in an enhanced gas barrier property and physical properties compared with compounds without MAH. The compound at 5 phr of MAH showed the highest crosslinking density and the best performances.

낮은 기체투과성을 보이는 epoxidized natural rubber 50(ENR 50)에 매우 낮은 기체투과성을 가지고 있고 마모 특성이 우수한 Nylon 6를 이축형 압출기를 사용해서 블렌드하였다. 혼합물의 기계적 물성과 기체차단성이 향상되는 효과를 얻었으나 ENR 50 매트릭스상에 Nylon 6의 분산성이 떨어져 큰 상승효과를 보이지는 않았다. 따라서 Nylon 6의 분산성을 개선하기 위해 ENR 50에 maleic anhydride(MAH)를 그래프트시켰다. MAH와 ENR 50간의 그래프트 반응은 FTIR 스펙트럼을 통해서 확인할 수 있었다. ENR 50-g-MAH/Nylon 6 배합물을 제조함으로 인해 기체차단성, 기계적 물성이 MAH를 사용하지 않았을 때보다 향상시킬 수 있었다. MAH의 그래프트 비율을 최대로 높인 5 phr을 첨가하였을 때 가교밀도가 높았으며 가장 좋은 물성을 보였다.

Keywords: ENR 50; Nylon 6; maleic anhydride; graft; gas barrier property.

References
  • 1. Kim MW, SunJin Cultural History., 133, 11 (2006)
  •  
  • 2. Carone E, Kopcak U, Goncalves MC, Nunes SP, Polymer, 41(15), 5929 (2000)
  •  
  • 3. Balamurugan GP, Maiti S, Polym. Test., 27, 752 (2008)
  •  
  • 4. Tanrattanakul V, Sungthong N, Raksa P, Polym. Test., 27, 794 (2008)
  •  
  • 5. Radovanovic E, Carone E, Goncalves MC, Polym.Test., 23, 231 (2004)
  •  
  • 6. Johnson T, Thomas S, Polymer., 40, 3225 (1999)
  •  
  • 7. Ma LF, Wei XF, Zhang Q, Wang WK, Gu L, Yang W, Xie BH, Yang MB, Mater. Design., 33, 104 (2012)
  •  
  • 8. Nakason C, Kaesman A, Homsin S, Kiatkamjornwong S, J. Appl. Polym. Sci., 81(11), 2803 (2001)
  •  
  • 9. Nakason C, Kaesman A, Homsin S, Kiatkamjornwong S, Polym. Test., 21, 449 (2002)
  •  
  • 10. Li C, Zhang Y, Polym. Test., 22, 191 (2003)
  •  
  • 11. Shujun W, Jiugao Y, Jinglin Y, Polym. Degrad. Stab., 87, 395 (2005)
  •  
  • 12. Lee HK, Ismail J, Kammer HW, Bakar MA, J. Appl. Polym. Sci., 95(1), 113 (2005)
  •  
  • 13. Nakason C, Kaesaman A, Rungvichaniwat A, Eardrod K, Kiatkamjonwong S, J. Appl. Polym. Sci., 89(6), 1453 (2003)
  •  
  • 14. Thiraphattaraphun L, Kiatkamjornwong S, Prasassarakich P, Damronglerd S, J. Appl. Polym. Sci., 81(2), 428 (2001)
  •  
  • 15. Li TQ, Ng N, Li RKY, J. Appl. Polym. Sci., 81(6), 1420 (2001)
  •  
  • 16. Li HM, Chen HB, Shen ZG, Lin SG, Polymer, 43(20), 5455 (2002)
  •  
  • 17. Aravind I, Albert P, Ranganathaiah C, Kurian JY, Thomas S, Polymer., 45, 492 (2004)
  •  
  • 18. Kim SJ, Shin BS, Hong JL, Cho WJ, Ha CS, Polymer, 42(9), 4073 (2001)
  •  
  • 19. Mishra JK, Ryou JH, Kim GH, Hwang KJ, Ha CS, Mater. Lett., 58, 27 (2004)
  •  
  • 20. Sen A, Bhattacharya M, Polymer., 41, 9177 (2002)
  •  
  • 21. Nakason C, Saiwaree S, Tatun S, Kaesaman A, Polym. Test., 25, 656 (2006)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2013; 37(6): 770-776

    Published online Nov 25, 2013

  • Received on Jul 14, 2013
  • Accepted on Aug 14, 2013