Article
  • Baroplastic Properties of Core-double Shell Type Nanoparticles Consisting of Crosslinked PS as a Core and PBA and PS as Shells
  • Park JY, Ryu SW
  • 가교된 PS 코어와 PBA 및 PS 셸로 이루어진 코어-더블셸형 나노입자의 압력가소성
  • 박지영, 류상욱
Abstract
Polymer nanoparticles with cross-linked core and PBA/PS double-shell were synthesized and their baroplastic properties were characterized. PBA/PS, the inner and outer shell with cross-linked core consisting of St and DVB were synthesized by three-stage emulsion polymerization. The obtained materials exhibited pressure-induced mixing of their components and could be processed at 25 ℃ by compression molding which means there was no effect of the presence of cross-linked core. Interestingly, the Young's modulus of molded objects has found to be affected strongly by the size of double-shell nanoparticles. Furthermore, the molded object of higher PBA content was successfully recycled 5 times at 25 ℃ and showed 0.55 MPa of modulus and 1.81 MPa of strength at break.

가교결합된 코어와 PBA, PS 더블-셸을 갖는 고분자 나노입자를 제조하고 압력가소 특성을 평가하였다. 더블-셸을 합성하기 위해 먼저, 가교된 코어입자를 St, DVB의 에멀션 중합을 통해서 제조하였으며, 이어서 PBA가 내부셸, PS가 외부셸을 형성하도록 3 단계의 연속적인 에멀션 중합을 수행하였다. 제조된 더블-셸 나노입자는 가교된 코어의 존재에도 불구하고 PBA, PS 간 압력상용성을 발견할 수 있었으며, 25 ℃에서 반투명한 시편으로 압출성형될 수 있었다. 기계적 물성측정 결과, 성형물의 탄성계수는 더블-셸 나노입자의 크기에 직접적으로 연관됨을 알 수 있었다. 또한 PBA가 과량으로 첨가된 시편의 경우, 25 ℃에서 재가공이 성공적으로 진행되어 5회의 연속된 압출성형에도 불구하고 0.55MPa의 탄성계수와 1.81 MPa의 파단강도를 얻을 수 있었다.

Keywords: emulsion; double-shell; modulus; baroplastic; recycle.

References
  • 1. Odian J, Principles of Polymerization, John Wiley & Sons, New York (1991)
  •  
  • 2. Dimonie VL, Daniels ES, Shaffer OL, El-Aasser MS, Emulsion Polymerization and Emulsion Polymers, Lowell PA, El-Aasser MS, Editors, Wiley, New York (1997)
  •  
  • 3. Kalinina O, Kumacheva E, Macromolecules, 34(18), 6380 (2001)
  •  
  • 4. Keskkula H, Paul DR, “Toughening Agents for Engineering Polymers,” in Rubber Toughened Engineering Plastics, Collier AA, Editor, Springer, Netherlands, Chapter 5, p 136 (1994)
  •  
  • 5. Landfester K, Boeffel C, Lambla M, Spiess HW, Macromolecules, 29(18), 5972 (1996)
  •  
  • 6. Zhao YQ, Urban MW, Macromolecules, 33(22), 8426 (2000)
  •  
  • 7. Gonzalez-Leon JA, Ryu SW, Hewlett SA, Ibrahim SH, Mayes AM, Macromolecules, 38(19), 8036 (2005)
  •  
  • 8. Kim MJ, Choi YD, Ryu SW, Polym.(Korea), 32(6), 573 (2008)
  •  
  • 9. Hajduk DA, Urayama P, Gruner SM, Erramilli S, Register RA, Brister K, Fetters LJ, Macromolecules, 28(21), 7148 (1995)
  •  
  • 10. Pollard M, Russell TP, Ruzette AV, Mayes AM, Gallot Y, Macromolecules, 31(19), 6493 (1998)
  •  
  • 11. Ruzette AVG, Banerjee P, Mayes AM, Russell TP, J. Chem. Phys., 114(18), 8205 (2001)
  •  
  • 12. Ryu DY, Lee DJ, Kim JK, Lavery KA, Russell TP, Han YS, Lee CH, Thiyagarajan P, Phys. Rev. Lett., 90, 235501 (2003)
  •  
  • 13. Cho JH, Wang ZG, Macromolecules, 39(13), 4576 (2006)
  •  
  • 14. Cho J, Shin K, Cho KS, Seo YS, Satija SK, Ryu DY, Kim JK, Macromolecules, 41(3), 955 (2008)
  •  
  • 15. Gonzales-Leon JA, Acar MH, Ryu SW, Ruzette AV, Mayes AM, Nature(London), 426, 424 (2003)
  •  
  • 16. Lee KH, Ryu SW, Macromol. Res., 20(12), 1294 (2012)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2014; 38(1): 80-84

    Published online Jan 25, 2014

  • Received on Aug 30, 2013
  • Accepted on Oct 12, 2013