Article
  • Comparison of the Properties of Poly(lactic acid) Nanocomposites with Various Fillers: Organoclay, Functionalized Graphene, or Organoclay/Functionalized Graphene Complex
  • Kwon K, Chang JH
  • 유기화 점토, 작용기화 그래핀 및 유기화 점토/작용기화 그래핀 복합체 등의 필러를 사용한 Poly(lactic acid) 나노 복합체의 물성 비교
  • 권기대, 장진해
Abstract
Poly(lactic acid)(PLA) nanocomposites containing various nanofillers were synthesized using the solution intercalation method. Organically modified bentonite clay (NSE), octadecylamine.graphene oxide (ODA-GO), and an NSE/ODA-GO complex were utilized as nanofillers in the fabrication of PLA hybrid films. PLA hybrid films with varying nanofiller contents in the range of 0-10 wt% were examined and compared in terms of their thermomechanical properties, morphologies, and oxygen permeabilities. Transmission electron microscopy (TEM) confirmed that most of the NSE and ODA-GO nanofillers were dispersed homogeneously throughout the PLA matrix on the nanoscale, although some agglomerate NSE/ODA-GO complex particles were also formed. Among the three nanofillers for PLA hybrid films, the NSE/ODA-GO complex showed the best improvement in film thermal stability. In contrast, NSE and ODAGO exhibited the best improvement in tensile mechanical properties and oxygen barrier properties of the PLA hybrid films, respectively.

용액 삽입(solution intercalation) 방법을 이용하여 다양한 나노 필러들을 포함하는 poly(lactic acid)(PLA) 나노 복합체를 합성하였다. 유기화 반응 처리된 벤토나이트 점토(NSE), 옥타데실아민(ODA)을 산화 그래핀(GO)에 반응한 ODA-GO, 그리고 유기화 처리된 벤토나이트와 ODA-GO의 복합체인 NSE/ODA-GO 등이 PLA 복합체 필름을 얻기 위한 나노 필러로 각각 사용되었다. 3가지 나노 필러들은 0-10 wt%의 함량으로 사용되었고 PLA 복합체 필름들의 열적-기계적 성질, 모폴로지, 산소 투과도 결과들을 서로 비교하였다. 투과전자현미경을 통하여 얻은 결과에서 NSE/ODA-GO 복합체는 약간 뭉쳐있었지만, NSE나 ODA-GO 등의 필러들은 PLA 매트릭스에 분산이 매우 양호하였음을 알 수 있었다. PLA 복합체 합성을 위해 사용된 3가지 필러 중에서, 열적 안정성에서는 NSE/ODA-GO가 가장 효과적이었지만, 기계적 인장 성질이나 산소 차단성에서는 각각 NSE와 ODA-GO가 가장 우수하였다.

Keywords: poly(lactic acid); organoclay; functionalized graphene oxide; organoclay/functionalized graphene complex; nanocomposite.

References
  • 1. Ogata N, Kawakage S, Ogihara T, J. Appl. Polym. Sci., 66, 573 (1999)
  •  
  • 2. Strawhecker KE, Manias E, Chem. Mater., 12, 2943 (2000)
  •  
  • 3. Manias E, Touny A, Wu L, Strawhecker K, Lu B, Chung TC, Chem. Mater., 13, 3516 (2001)
  •  
  • 4. Kim IK, Yeum JH, Polym.(Korea), 35(6), 553 (2011)
  •  
  • 5. Cha JJ, Yim JH, Polym.(Korea), 37(4), 507 (2013)
  •  
  • 6. Fukushima Y, Inagaki S, Incl. Phenom., 5, 473 (1987)
  •  
  • 7. Giannelis EP, Adv. Mater., 8(1), 29 (1996)
  •  
  • 8. Srikhirin T, Moet A, Lando JB, Polym. Adv. Tech., 9, 491 (1998)
  •  
  • 9. Choi YS, Chung IJ, Korean Chem. Eng. Res., 46(1), 23 (2008)
  •  
  • 10. Lee C, Wei X, Kysar JW, Hone J, Science, 321, 385 (2008)
  •  
  • 11. Stoller MD, Park S, Zhu Y, An J, Ruoff RS, Nano Lett., 8, 3498 (2008)
  •  
  • 12. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN, Nano Lett., 8, 902 (2008)
  •  
  • 13. Du X, Skachko I, Barker A, Andrei EY, Nat. Nanotechnol., 3(8), 491 (2008)
  •  
  • 14. Jung I, Dikin DA, Piner RD, Ruoff RS, Nano Lett., 8, 4283 (2008)
  •  
  • 15. Zhang Y, Tan YW, Stormer HL, Kim P, Nature, 438, 201 (2005)
  •  
  • 16. Ansari S, Giannelis EP, J. Polym. Sci. B: Polym. Phys., 47(9), 888 (2009)
  •  
  • 17. Raghu AV, Lee YR, Jeong HM, Macromol. Chem. Phys., 209, 2487 (2008)
  •  
  • 18. Cai D, Song M, J. Mater. Chem., 20, 7906 (2010)
  •  
  • 19. Perego G, Cella GD, Bastioli C, J. Appl. Polym. Sci., 195, 1649 (1996)
  •  
  • 20. Sinclair RG, J. Macromol. Sci. Pure Appl. Chem., 33, 585 (1996)
  •  
  • 21. Jain RA, Biomaterials, 21, 2475 (2000)
  •  
  • 22. Mikos AG, Lyman MD, Freed LE, Langer R, Biomaterials, 15, 55 (1994)
  •  
  • 23. Taylor MS, Daniels AU, Andriano KP, Heller J, J. Appl. Biomater., 5, 151 (1994)
  •  
  • 24. Park TG, Cohen S, Langer R, Macromolecules, 25, 116 (1992)
  •  
  • 25. Urayama H, Kanamori T, Kimura Y, Macromol. Mater. Eng., 287, 116 (2002)
  •  
  • 26. Chang JH, An YU, Sur GS, J. Polym. Sci. B: Polym. Phys., 41(1), 94 (2003)
  •  
  • 27. Chang JH, An YU, Cho DH, Giannelis EP, Polymer, 44(13), 3715 (2003)
  •  
  • 28. Hummers W, Offman R, J. Am. Chem. Soc., 80, 1339 (1958)
  •  
  • 29. Chang JH, Kim SJ, Im S, Polymer, 45(15), 5171 (2004)
  •  
  • 30. Chang JH, Mun MK, Lee IC, J. Appl. Polym. Sci., 98(5), 2009 (2005)
  •  
  • 31. Galgali G, Ramesh C, Lele A, Macromolecules, 34(4), 852 (2001)
  •  
  • 32. Morgan AB, Gilman JW, J. Appl. Polym. Sci., 87(8), 1329 (2003)
  •  
  • 33. Chen TK, Tien YI, Wei KH, Polymer, 41(4), 1345 (2000)
  •  
  • 34. Fornes TD, Yoon PJ, Hunter DL, Keskkula H, Paul DR, Polymer, 43(22), 5915 (2002)
  •  
  • 35. Frischer HR, Gielgens LH, Koster TP, M. Acta Polym., 50, 122 (1999)
  •  
  • 36. Masenelli-Varlot K, Reynaud E, Vigier G, Varlet J, J. Polym. Sci. B: Polym. Phys., 40(3), 272 (2002)
  •  
  • 37. Bharadwaj RK, Macromolecules, 34(26), 9189 (2001)
  •  
  • 38. Jarus D, Hiltner A, Baer E, Polymer, 43(8), 2401 (2002)
  •  
  • 39. Zoppi RA, das Neves S, Nunes SP, Polymer, 41(14), 5461 (2000)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2014; 38(2): 232-239

    Published online Mar 25, 2014

  • Received on Nov 1, 2013
  • Accepted on Nov 29, 2013