Article
  • Lewis Acid Degradation Characteristics of Perfluoropolyethers Derivatives
  • Chun SW, Kang HJ
  • 퍼프로로폴리에테르 유도체의 루이스 산 분해특성
  • 천상욱, 강호종
Abstract
The degradation characteristics of perfluoropolyether (PFPE) derivatives currently being used as computer hard disk lubricants have been investigated. Especially, we considered the effects of end group on degradation behavior of PFPE derivatives. It was found that the degradation of PFPE derivatives in the presence of Al2O3 involves two degradation mechanisms such as thermal degradation and Lewis acid disproportionation by AlF3 which was mainly formed by oxide-to-halide reaction between Al2O3 and the degraded PFPE. The end groups were strongly related to Lewis acid disproportionation of PFPE derivatives, and it is due to the difference of electron donating ability in the each end groups. Even if PFPE derivatives have same repeating unit in the main chain, Lewis acid disproportionation was prohibited by higher electron donating ability by the end group which caused the high electron density at the acetal group in the repeating unit.

컴퓨터 하드디스크 윤활제로 사용되고 있는 perfluoropolyether(PFPE) 유도체의 분해특성을 살펴보았다. 특히, 이들의 각기 다른 말단기가 분해특성에 미치는 영향을 중점적으로 고찰하였다. 분해 촉매로 사용된 알루미나 존재하에서 PFPE 유도체의 분해는 열분해와 함께 알루미나와의 화학반응에 의하여 발현된 알루미늄 플로라이드가 루이스 산으로 작용하여 진행되는 루이스 산 분해가 일어남을 알 수 있었다. 화학적으로 다른 PFPE 유도체의 말단기는 루이스 산 분해에 각기 다른 영향을 미치며 이는 말단기들의 전자 donating 능력이 다르기 때문으로 해석할 수 있다. 즉, PFPE 주사슬 내 동일한 반복 단위체를 가지더라도 유도체 말단기의 전자 donating 능력이 강할수록 반복 단위체 내의 아세탈기에 전자밀도가 높아지게 되어 루이스 산에 의한 분자 사슬 절단이 억제됨을 확인하였다.

Keywords: perfluoropolyethers; PFPE derivatives; thermal degradation; Al2O3; Lewis acid disproportionation,electron donating.

References
  • 1. Mee CD, Daniel ED, Editors, “Technology”, in Magnetic Recording, McGraw-Hill, New York, Vol. 1 (1987)
  •  
  • 2. Mate C, Dai Q, Payne R, Knigge B, Baumgart P, IEEE Trans. Magn., 41, 626 (2005)
  •  
  • 3. Moulder JF, Hannond JS, Smith KL, Appl. Surf. Sci., 25, 446 (1986)
  •  
  • 4. Bhushan B, Sianesi D, Pasetti A, Fontanelli R, Bernardi GC, Caporiccio G, Chim. Ind., 55, 208 (1973)
  •  
  • 5. Gumprecht WH, ASLE Trans., 9, 24 (1966)
  •  
  • 6. Li L, Jones P, Hsia YT, Tribol. Lett., 16, 21 (2004)
  •  
  • 7. Kasai PH, Tang WT, Wheeler P, Appl. Surf. Sci., 51, 201 (1999)
  •  
  • 8. Kasai PH, Macromolecules, 25, 6791 (1992)
  •  
  • 9. Yang M, Talke FE, Perettie DJ, Morgan TA, Kar KK, Dekoven BM, Potter GE, Tribol. Trans., 38, 636 (1995)
  •  
  • 10. Chun SW, Park S, Kim W, Kang HJ, J. Korean Ind. Eng. Chem., 11(8), 923 (2000)
  •  
  • 11. Park S, Chun S, Perettie DJ, Talk FE, Kang HJ, Polym.(Korea), 23(1), 73 (1999)
  •  
  • 12. Gill S, Rowntree RA, 6th European Spaces Mechanism and Tribology Symp., Zurich, 279 (1995)
  •  
  • 13. Venier CG, Casserly EW, Gunsel S, J. Synth. Lubr., 9, 237 (1992)
  •  
  • 14. Hentschel KH, J. Synth. Lubr., 2, 143 (1985)
  •  
  • 15. Kondo H, Adv. Tribol., 2012, 20 (2012)
  •  
  • 16. Fusaro RL, Lubr. Eng., 182 (1995)
  •  
  • 17. Kasai PH, Raman V, Tribol. Lett., 16, 29 (2004)
  •  
  • 18. Pacansky J, Miller M, Hatton W, Liu B, J. Am. Chem. Soc., 113, 329 (1991)
  •  
  • 19. Burber H, Pawelke G, Spectrochim. Acta, 31, 1965 (1975)
  •  
  • 20. Lowery AH, George C, D'Antonia P, Karle J, J. Mol. Struct., 63, 243 (1980)
  •  
  • 21. Pacansky J, Liu B, J. Phys. Chem., 89, 1883 (1985)
  •  
  • 22. Jhon MS, Choi HJ, Polymer, 51(9), 1882 (2010)
  •  
  • 23. Ciampelli F, Venturi MT, Sianesi D, Org. Magn. Reson., 1, 281 (1969)
  •  
  • 24. Wattman RJ, Chem. Mater., 9, 2185 (1997)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2014; 38(5): 650-655

    Published online Sep 25, 2014

  • Received on Mar 3, 2014
  • Accepted on Apr 17, 2014