Article
  • Observation of Interfacial Adhesion in Silica-NR Compound by Using Bifunctional Silane Coupling Agent
  • Lee JY, Kim SM, Kim KJ
  • 양기능성 커플링제 실란에 의한 실리카-천연고무 복합소재의 계면간 결합 고찰
  • 이종영, 김성민, 김광제
Abstract
Formation of a strong 3-dimensional interfacial network structure via chemical reaction between hydroxyl group on silica surface and NR chain by the addition of bis(triethoxysilylpropyl)tetrasulfide (TESPT) into silica-filled NR compound was observed by using Py-GC/MS and SEM. Addition of TESPT into silica-filled NR compound decreased scorch time (t10) due to increased sulfur content, and reduced cure rate index (CRI) via continuous reaction between sulfur atoms in TESPT, which acted as a sulfur donor, and activators and/or accelerators. Addition of TESPT in the compound improved processability and mechanical properties of the compound. Overall, we observed that the addition of TESPT into the silica-filled NR compound formed a silica-TESPT-NR network, and thus the degree of crosslinking was increased resulting in improved mechanical properties.

양기능성 실란 커플링제인 bis(triethoxysilylpropyl)tetrasulfide(TESPT)가 실리카/천연고무 복합소재 내에서 실리카의 hydroxy기와 고무 계면간에 화학적 결합반응을 하여 실리카-실란-고무간의 3차원 사슬구조를 형성한 것을 열분해 가스 크로마토그래피 질량분석기(Py-GC/MS)와 주사전자현미경(SEM)을 통해 관찰하였다. TESPT의 첨가로 배합물 내의 황 함유율이 증가하여 스코치 시간(t10)은 감소하고, TESPT 내 sulfur donor 역할을 하는 황이 활성화제 및 촉진제와의 복합반응으로 가교반응이 지속적으로 이루어짐에 따라서 가교속도지수(CRI)의 값이 감소하였다. 또한 TESPT가 첨가된 컴파운드는 첨가되지 않은 컴파운드에 비해 가공성 및 기계적 물성이 향상되었다. 결과적으로, 실리카로 충전된 천연고무 복합소재에 실란 커플링제(TESPT)가 첨가되어 화학반응으로 실리카-실란-고무간의 3차원 사슬구조가 형성됨을 관찰하였고 이에 따라 가교밀도가 증가하여 복합소재의 물성 증가에 기여함을 보여주었다.

Keywords: interfacial adhesion observation; silica-silane-NR network; mechanical properties; Py-GC/MS.

References
  • 1. Wolff S, Rubb. Chem. Technol., 69, 325 (1996)
  •  
  • 2. White JL, Kim KJ, Thermoplastic and Rubber Compounds: Technology and Physical ChemistryHanser, Munich (2008)
  •  
  • 3. Ou YC, Yu ZZ, Vida A, Donnet JB, Rubb. Chem. Technol., 67, 834 (1994)
  •  
  • 4. Wang MJ, Lu SX, Mahmud K, J. Polym. Sci. B: Polym. Phys., 38(9), 1240 (2000)
  •  
  • 5. Petrovic ZS, Javni I, Waddon A, Banhegyi G, J. Appl. Polym. Sci., 76(2), 133 (2000)
  •  
  • 6. Kim KJ, White JL, J. Ind. Eng. Chem., 6(4), 262 (2000)
  •  
  • 7. Sae-oui P, Thepsuwan U, Hatthapanit K, Polym. Test., 23, 397 (2004)
  •  
  • 8. Kim KJ, White JL, J. Ind. Eng. Chem., 7(1), 50 (2001)
  •  
  • 9. Kim KJ, White JL, J. Ind. Eng. Chem., 6(6), 372 (2000)
  •  
  • 10. Kohjiya S, Ikeda Y, Rubb. Chem. Technol., 73, 534 (2000)
  •  
  • 11. Gorl U, Munzenberg J, Luginsland D, Muller A, Kautsch. Gummi Kunstst., 52, 588 (1998)
  •  
  • 12. Rauline R, U.S. Patent 5,227,425 (1993)
  •  
  • 13. Gorl U, Hunsche A, Mueller A, Koban HG, Rubb. Chem. Technol., 70, 608 (1997)
  •  
  • 14. Kim K, VanderKooi J, Kautsch. Gummi Kunstst., 55(10), 518 (2002)
  •  
  • 15. Kim KJ, VanderKooi J, Rubb. Chem. Technol., 78, 84 (2005)
  •  
  • 16. Ishida H, Polym. Compos., 5, 101 (1984)
  •  
  • 17. Ishida H, Koenig JL, J. Colloid Interface Sci., 106, 334 (1985)
  •  
  • 18. Wolff S, Kautsch. Gummi Kunstst., 30, 516 (1977)
  •  
  • 19. Rochow EG, J. Amer. Chem. Soc., 67, 963 (1945)
  •  
  • 20. Kim KJ, J. Appl. Polym. Sci., 124(4), 2937 (2012)
  •  
  • 21. Ansarifr A, Lim HP, Nijhawan R, Int. J. Adhes. Adhes., 24, 9 (2004)
  •  
  • 22. Hashim AS, Azahari B, Ikeda Y, Kohjiya S, Rubb. Chem. Technol., 71, 289 (1998)
  •  
  • 23. Isayev AI, Hong CK, Kim KJ, Rubb. Chem. Technol., 76, 923 (2003)
  •  
  • 24. Kim KJ, Asian J. Chem., 25, 5119 (2013)
  •  
  • 25. Jung WY, Weon JI, Polym.(Korea), 38(1), 1 (2014)
  •  
  • 26. Lattimer RP, J. Anal. Appl. Pyrol., 26, 65 (1993)
  •  
  • 27. Dick JS, Basic Rubber Testing: Selecting Methods for a Rubber Test ProgramASTM International, West Conshohocken (2003)
  •  
  • 28. Gent AN, Engineering with Rubber: How to Design Rubber ComponentHanser, Munich (2001)
  •  
  • 29. Klockmann O, Hasse A, RubberChem., The 5th International ConferenceMunich, Germany, December 5-6 (2006)
  •  
  • 30. Zumdahl SS, Chemistry5th Ed., Houghton Mifflin College Div (1999)
  •  
  • 31. Ha SH, Kim SW, Jeong HK, Asian J. Chem., 25, 5245 (2013)
  •  
  • 32. Mende M, Schwarz S, Petzold G, Jaeger W, J. Appl. Polym. Sci., 103(6), 3776 (2007)
  •  
  • 33. Tadros TF, J. Colloid Interface Sci., 64, 36 (1978)
  •  
  • 34. Hasse A, Klockmann O, Wehmeier A, Luginsland HD, Kautsch. Gummi Kunstst., 55(5), 236 (2002)
  •  
  • 35. Kim KJ, Elast. Compos., 44, 134 (2009)
  •  
  • 36. Morrison NJ, Porter M, Rubb. Chem. Technol., 57, 63 (1984)
  •  
  • 37. Wolff S, Kautsch. Gummi Kunstst., 34, 280 (1981)
  •  
  • 38. Gupta RK, Kennal E, Kim KJ, Polymer Nanocomposites HandbookCRC Press, Boca Raton (2009)
  •  
  • 39. Parks CR, Brown RJ, Rubb. Chem. Technol., 49, 233 (1976)
  •  
  • 40. Hewitt N, Compounding Precipitated Silica in Elastomers: Theory and PracticeWilliam Andrew, Norwich, NY (2007)
  •  
  • 41. Ghosh P, Katare S, Patkar P, Caruthers JM, Venkatksubramanian V, Rubb. Chem. Technol., 76, 592 (2003)
  •  
  • 42. Salvi AM, Pucciariello R, Guascito MR, Villani V, Intermite L, Surf. Interface Anal., 33, 850 (2002)
  •  
  • 43. Wolff S, Kautsch. Gummi Kunstst., 32, 312 (1979)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2015; 39(2): 240-246

    Published online Mar 25, 2015

  • Received on Jun 6, 2014
  • Accepted on Aug 20, 2014