Article
  • Preparation and Characterization of Inclusion Complex between β-Cyclodextrin and Polylactic Acid
  • Nan SY, Fang ZY, Jun ZW
  • β-Cyclodextrin과 Polylactic Acid간의 포접화합물 제조 및 특성 분석
Abstract
The inclusion complexes (ICs) between polylactic acid (PLA) and β-cyclodextrin (CD) were prepared by coprecipitation method in this work. The orthogonal experiments were designed to investigate the influence of different factors on the formation of inclusion complexes. The results suggested that the optimum scheme of inclusion compounds could be obtained when the feeding ratio of CD to PLA (wt%) was 20:1, stirring speed was 6 kr/min and the stirring time was 30 min. The structures and properties of the inclusion complexes were characterized by 1H NMR, FTIR, DSC, FT-Raman, XRD and TGA. The DSC results demonstrated that the crystallization behavior of the inclusion complexes nearly disappeared. It was found that β-CD-PLA inclusion complex had a better thermal stability compared with the neat PLA. The model of the inclusion complexes was proposed on the basis of XRD, 1H NMR and DSC results.

Keywords: β-cyclodextrin; polylactic acid; co-precipitation method; inclusion complex; properties.

References
  • 1. Jung JH, Lee SS, Kaneda T, Korea Polym. J., 7(6), 377 (1999)
  •  
  • 2. Shuai XT, Wei M, Porbeni FE, Bullions TA, Tonelli AE, Biomacromolecules, 3(1), 201 (2002)
  •  
  • 3. Porbeni FE, Edeki EM, Shin ID, Tonelli AE, Polymer, 42(16), 6907 (2001)
  •  
  • 4. Vogel R, Tandler B, Haussler L, Jehnichen D, Brunig H, Macromol. Biosci., 6, 730 (2006)
  •  
  • 5. Huh KM, Ooya T, Lee WK, Sasaki S, Kwon IC, Jeong SY, Yui N, Macromolecules, 3, 8657 (2001)
  •  
  • 6. Zhang S, Yu ZJ, Govender T, Luo HY, Li BJ, Polymer, 49(15), 3205 (2008)
  •  
  • 7. Auzely-Velty R, Comptes Rendus Chimie, 14, 167 (2011)
  •  
  • 8. Harada A, Kamachi M, Macromolecules, 23, 2821 (1990)
  •  
  • 9. Tallury SS, Smyth MB, Cakmak E, Pasquinelli MA, J. Phys. Chem., 116, 2023 (2012)
  •  
  • 10. Tabassi SAS, Khodaverdi E, Hadizadeh F, Res. Pharm. Sci., 7, 975 (2012)
  •  
  • 11. Semsarzadeh MA, Amiri S, Silicon, 4, 151 (2012)
  •  
  • 12. Lee JR, Chun SW, Kang HJ, Polym.(Korea), 27(4), 285 (2003)
  •  
  • 13. Lee SH, Kim D, Kim JH, Lee DH, Sim SJ, Nam JD, Kye H, Lee Y, Polym.(Korea), 28(6), 519 (2004)
  •  
  • 14. Jang JW, Lee B, Han CW, Kim MS, Cho SH, Lee HB, Khang G, Polym.(Korea), 28(5), 382 (2004)
  •  
  • 15. He LH, Huang J, Chen YM, Xu XJ, Liu LP, Macromolecules, 38, 3845 (2002)
  •  
  • 16. Dong T, He Y, Zhu B, Shin KM, Inoue Y, Macromolecules, 38(18), 7736 (2005)
  •  
  • 17. Li J, Chen B, Wang X, Goh SH, Polymer, 45(6), 1777 (2004)
  •  
  • 18. Oliveira T, Botelho G, Alves NM, Mano JF, Colloid Polym. Sci., 292, 863 (2014)
  •  
  • 19. Zhang R, Wang YM, Wang KJ, Zheng GQ, Li Q, Shen CY, Polym. Bull., 70(1), 195 (2013)
  •  
  • 20. Espartero JL, Rashkov I, Li SM, Manolova N, Vert M, Macromolecules, 29(10), 3535 (1996)
  •  
  • 21. Zhang JM, Duan YX, Sato H, Tsuji H, Noda I, Yan S, Ozaki Y, Macromolecules, 38(19), 8012 (2005)
  •  
  • 22. Furukawa T, Sato H, Murakami R, Zhang JM, Duan YX, Noda I, Ochiai S, Ozaki Y, Macromolecules, 38(15), 6445 (2005)
  •  
  • 23. Janorkar AV, Metters AT, Hirt DE, Macromolecules, 37(24), 9151 (2004)
  •  
  • 24. Hirlekar RS, Sonawane SN, Kadam VJ, AAPS. Pharm. Sci. Tech., 10, 858 (2009)
  •  
  • 25. Dong T, He Y, Shin KM, Inoue Y, Macromol. Biosci., 4, 1084 (2004)
  •  
  • 26. Huang L, Allen E, Tonelli AE, Polymer, 39(20), 4857 (1998)
  •  
  • 27. Inoue Y, Annual Reports on NMR Spectroscopy, 27, 59 (1993)
  •  
  • 28. Jiao H, Goh SH, Valiyaveettil S, Macromolecules, 34(23), 8138 (2001)
  •  
  • 29. Harada A, Okada M, Li J, Kamachi M, Macromolecules, 28(24), 8406 (1995)
  •  
  • 30. Qin DR, Kean RT, Appl. Spectrosc., 52, 488 (1998)
  •  
  • 31. Kister G, Cassanas G, Vert M, Polymer, 39(2), 267 (1998)
  •  
  • 32. Do Nascimento GM, Da Silva JEP, De Torresi SIC, Santos PS, Mol. Cryst. Liq. Cryst., 374, 53 (2002)
  •  
  • 33. Kayaci F, Umu OCO, Tekinay T, Uyar T, J. Agr. Food Chem., 61, 3901 (2013)
  •  
  • 34. Xie DM, Yang KS, Sun WX, Curr. Appl. Phys., 7, 15 (2007)
  •  
  • 35. Harada A, Okada M, Li J, Kamachi M, Macromolecules, 28(24), 8406 (1995)
  •  
  • 36. Li JY, Yan DY, Macromolecules, 34(6), 1542 (2001)
  •  
  • 37. Okumura H, Kawaguchi Y, Harada A, Macromolecules, 34(18), 6338 (2001)
  •  
  • 38. Huang L, Allen E, Tonelli AE, Polymer, 40(11), 3211 (1999)
  •  
  • 39. Michishita T, Takashima Y, Harada A, Macromol. Rapid Commun., 25(12), 1159 (2004)
  •  
  • 40. Huang JC, Li X, Lin TT, He CB, Mya KY, Xiao Y, Li J, J. Polym. Sci. B: Polym. Phys., 42(7), 1173 (2004)
  •  
  • 41. Jiao H, Goh SH, Valiyaveettil S, Macromolecules, 35(4), 1399 (2002)
  •  
  • 42. Ohmura M, Kawahara Y, Okude K, Hasegawa Y, Hayashida M, Kurimoto R, Kawaguchi A, Polymer, 45(20), 6967 (2004)
  •  
  • 43. Popova EI, Topchieva IN, Zhavoronkova EV, Panava IG, Matukhina EV, Gerasimov VI, Polym. Sci. Series A: Chem. Phys., 44, 72 (2002)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2015; 39(2): 261-267

    Published online Mar 25, 2015

  • Received on Jun 17, 2014
  • Accepted on Aug 7, 2014