Article
  • Development of Acrylic Acid Grafted Polycaprolactone (PCL)/Biphasic Calcium Phosphate (BCP) Nanofibers for Bone Tissue Engineering Using Gamma-Irradiation
  • Jeong JO, Jeong SI, Shin YM, Park JS, Gwon HJ, An SJ, Huh JB, Shin H, Lim YM
  • 감마선을 이용한 아크릴산이 도입된 골조직공학용 PCL/BCP 나노섬유 지지체의 개발
  • 정진오, 정성린, 신영민, 박종석, 권희정, 안성준, 허중보, 신흥수, 임윤묵
Abstract
Polycaprolactone (PCL) and biphasic calcium phosphate (BCP) have been considered as useful materials for orthopedic devices and osseous implants because of their biocompatibility and bone-forming activity. However, PCLbased scaffolds have hydrophobic surfaces reducing initial cell adhesion or proliferation. To overcome the limitation, we fabricated surface-modified PCL/BCP nanofibers using gamma-irradiation for bone tissue engineering. PCL/BCP nanofibers were prepared by electrospinning and then we supplemented hydrophilicity by introducing acrylic acid (AAc) through gamma-irradiation. We confirmed the surface of nanofibers by SEM, and then the initial viability of MG63 was significantly increased on the AAc grafted nanofibers, and alkaline phosphatase activity(1.239±0.226 nmole/μg/min) improved on the modified nanofibers than that on the non-modified nanofibers(0.590±0.286 nmole/μg/min). Therefore, AAc-grafted nanofibers may be a good tool for bone tissue engineering applications.

Polycaprolactone(PCL)과 biphasic calcium phosphate(BCP)는 생체적합성 및 골 형성 촉진 등으로 인해 정형외과 소재로 사용되고 있다. 하지만, PCL은 표면이 소수성으로 인해 세포의 부착 및 증식에 제한적이기 때문에 이를 극복하기 위해 본 연구에서는 감마선을 이용하여 골 재생을 위한 친수성이 향상된 PCL/BCP 나노섬유를 제조하였다. 나노섬유는 전기방사를 통해 제작했으며, 감마선을 이용하여 acrylic acid(AAc)를 도입하였다. SEM을 통해 나노섬유 표면을 확인하였고, AAc가 도입된 나노섬유 위에서 MG63의 초기 생존율이 현저히 증가한 것을 확인하였다. 알칼리성 포스파테이즈 활성은 1.239±0.226 nmole/μg/min으로 개질되지 않은 나노섬유(0.590±0.286 nmole/μg/min) 보다 증가하였다. 따라서, AAc가 도입된 PCL/BCP 나노섬유는 골조직 재생에 활용될 수 있을 것으로 기대된다.

Keywords: polycaprolactone; biphasic calcium phosphate; electrospinning; gamma-irradiation; acrylic acid; bone tissue engineering

References
  • 1. Park GB, Park JW, An HW, Yang DJ, Choi SK, Jang IS, Yeo SI, Seo JY, J. Korean Acad. Periodontol., 36, 797 (2006)
  •  
  • 2. Chong MSK, Lee CN, Teoh SH, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 27, 309 (2007)
  •  
  • 3. Ma Z, Gao C, Gong Y, Shen J, Biomaterials, 26, 1252 (2005)
  •  
  • 4. Park GE, Pattison MA, Park K, Webster TJ, Biomaterials, 26, 3075 (2005)
  •  
  • 5. Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE, Hollister SJ, Das S, Biomaterials, 26, 4817 (2005)
  •  
  • 6. Lei Y, Rai B, Ho KH, Teoh SH, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 27, 293 (2007)
  •  
  • 7. Tay BY, Zhang SX, Myint MH, Ng FL, Chandrasekaran M, Tan LKA, J. Mater. Process. Technol., 182, 117 (2007)
  •  
  • 8. Wu KJ, Wu CS, Chang JS, Process Biochem., 42, 669 (2007)
  •  
  • 9. Shin YM, Park JS, Jeong SI, An SJ, Gwon HJ, Lim YM, Nho YC, Kim CY, Biotechnol. Bioeng. Eng., 19, 341 (2014)
  •  
  • 10. Manjubala I, Sivakumar M, Mater. Chem. Phys., 71(3), 272 (2001)
  •  
  • 11. Li Y, Weng W, Tam KC, Acta Biomater., 3, 251 (2007)
  •  
  • 12. Shuai C, Feng P, Cao C, Peng S, Biotechnol. Bioeng. Eng., 18, 520 (2013)
  •  
  • 13. Mangano C, Bartolucci E, Mazzocco C, Clin Oral Implants Res., 18, 23 (2003)
  •  
  • 14. Langer R, Vacanti JP, Science, 260, 920 (1993)
  •  
  • 15. Kim BS, Mooney DJ, TIBTECH, 16, 224 (1998)
  •  
  • 16. Bae MS, Jeong SI, Kim SE, Lee JB, Heo DN, Kwon IK, Tissue Eng. Regen. Med., 5, 196 (2008)
  •  
  • 17. Kwon IK, Kidoaki S, Matsuda T, Biomaterials, 26, 3929 (2005)
  •  
  • 18. Shahrooz Z, Vahid HA, Iran. Polym. J., 19, 457 (2010)
  •  
  • 19. Chen Z, Mo X, Qing F, Mater. Len., 61, 3490 (2007)
  •  
  • 20. Ma K, Chan CK, Liao S, Hwang WYK, Feng Q, Ramakrishna S, Biomaterials, 29, 2096 (2008)
  •  
  • 21. Kim TG, Park TG, Tissue Eng., 12, 221 (2006)
  •  
  • 22. Yang HS, Park K, Kim JJ, Kim BS, Han DK, Tissue Eng. Regen. Med., 5, 498 (2008)
  •  
  • 23. Grondahl L, Chandler-Temple A, Trau M, Biomacromolecules, 6(4), 2197 (2005)
  •  
  • 24. Choi J, Jung HJ, Park BJ, Joung YK, Park K, Han DK, Polym.(Korea), 36, 357 (2011)
  •  
  • 25. Shin YM, Kim WJ, Park JS, Gwon HJ, Nho YC, Lim YM, J. Radiation Industry, 5, 371 (2011)
  •  
  • 26. Kim HA, Park JS, Choi JB, Lim YM, Nho YC, Polym.(Korea), 36, 71 (2011)
  •  
  • 27. Choi JB, Jeong SI, Gwon HJ, Park JS, Nho YC, Choi YH, Park KJ, Park MY, Shin H, Lim YM, J. Radiation Industry, 6, 159 (2012)
  •  
  • 28. Lim JY, Shin YM, Choi JB, Jeong JO, Gwon HJ, Jeong SI, Park JS, Lim YM, J. Radiation Industry, 7, 45 (2013)
  •  
  • 29. Shin YM, Kim KS, Lim YM, Nho YC, Shin H, Biomacromolecules, 9(7), 1772 (2008)
  •  
  • 30. Shin YM, Lim JY, Park JS, Gwon HJ, Jeong SI, Lim YM, Biotechnol. Bioeng. Eng., 19, 118 (2014)
  •  
  • 31. Jo SY, Youn MH, Lim YM, Gwon HJ, Park JS, Nho YC, J. Radiation Industry, 4, 147 (2010)
  •  
  • 32. Saadat A, Behnamghader A, Karbasi S, Abedi D, Soleimani M, Shafiee A, Biotechnol. Bioeng. Eng., 18, 587 (2013)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2015; 39(3): 418-425

    Published online May 25, 2015

  • 10.7317/pk.2015.39.3.418
  • Received on Jan 1, 2014
  • Accepted on Nov 16, 2014