Article
  • Comparisons of the Properties of Epoxy Nanocomposites with Different Organoclays
  • Ha TY, Chang JH
  • 다른 유기화 점토를 사용한 에폭시 나노 복합체의 특성 비교
  • 하태영, 장진해
Abstract
Epoxy nanocomposites containing two different organoclays were synthesized, and their thermal properties, morphology, oxygen permeability, and optical transparency were compared. STN synthesized from hectorite, and Cloisite 30B obtained from montmorillonite, were used for producing epoxy hybrids. Using a solution intercalation method, hybrid films were obtained from blended solutions of epoxy and organoclays, with the filler content varying from 3 to 10 wt%. The differences in the properties of the epoxy hybrid films were then analyzed with respect to filler content. Transmission electron microscopy analysis confirmed that both organoclays were homogeneously dispersed in the polymer matrix, although some organoclay aggregates formed as well. The glass transition temperature and the oxygen barrier property of the hybrid films increased with increasing organoclay content. In contrast, the initial decomposition temperature and optical transparency of the films decreased continuously with increasing organoclay content. In addition, for a constant film thickness, the oxygen permeations of the films decreased continuously with increasing number of layers in the laminated hybrid film containing 10 wt% organoclays.

두 종류의 유기화 점토를 사용하여 에폭시 나노 복합체 필름을 제조하였고 각 필름들의 열적 성질, 모폴로지, 산소 투과도 및 광학 투명도의 물성을 서로 비교하였다. 에폭시 복합체에 사용된 유기화 점토로는 헥토라이트(hectorite)로부터 합성된 STN과 몬모릴로나이트(montmorillonite, MMT)를 이용한 Cloisite 30B이었다. 용액 삽입(solution intercalation)법을 이용하여 3~10 wt% 함량의 농도로 유기화 점토를 에폭시에 분산시켜 복합체 필름을 제조하였고, 분산된 유기화 점토의 함량에 따른 물성도 비교하였다. 투과 전자 현미경을 통하여 점토가 비록 일부분이 뭉치기는 했지만, 두 종류의 점토 모두 고분자 매트릭스에 양호하게 분산되었음을 확인하였다. 에폭시 복합체 필름의 유리 전이 온도와 산소 차단성은 유기화 점토의 농도가 증가함에 따라 증가하였다. 그러나 이와는 반대로 초기열분해 온도와 광학 투명도는 두 가지 유기화 점토 양의 증가에 따라 모두 감소하였다. 한편으로, 10 wt% 유기화 점토의 복합체 필름을 적층(lamination)하여 얻은 필름의 경우에는 동일한 두께일 때 적층 수가 증가할수록 산소 투과도는 점점 감소하였다.

Keywords: epoxy; organoclay; nanocomposite; film

References
  • 1. Chun H, Tak SY, Kim Y, Park SJ, Park SY, Kang KN, Park SH, Polym. Sci. Technol., 24(1), 10 (2013)
  •  
  • 2. Naito C, Todd M, Microelectron. Reliab., 42, 119 (2002)
  •  
  • 3. He Y, Moreira BE, Overson A, Nakamura SH, Bider C, Briscoe JF, Thermochim. Acta, 1, 357 (2000)
  •  
  • 4. Lin LL, Ho TH, Wang CS, Polymer, 38(8), 1997 (1997)
  •  
  • 5. Jeong YG, An JE, Compos. Pt. A-Appl. Sci. Manuf., 56, 1 (2014)
  •  
  • 6. Vilchez JL, Zafra A, Gonzalez-Casado A, Hontoria E, Olmo MD, Anal. Chim. Acta, 431, 31 (2001)
  •  
  • 7. Jin FL, Ma CJ, Park SJ, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 528, 8517 (2011)
  •  
  • 8. Chekanov Y, Arrington D, Brust G, Pojman JA, J. Appl. Polym. Sci., 66(6), 1209 (1997)
  •  
  • 9. Wang CS, Shieh JY, Eur. Polym. J., 36, 443 (2000)
  •  
  • 10. Rutnakornpituk M, Eur. Polym. J., 41, 1043 (2005)
  •  
  • 11. Xidas PI, Triantafyllidis KS, Eur. Polym. J., 46, 404 (2010)
  •  
  • 12. Voo R, Mariatti M, Sim LC, Compos. Part B: Eng., 43, 3037 (2012)
  •  
  • 13. Na HY, Yeom HY, Yoon BC, Lee SJ, Polym.(Korea), 38(2), 171 (2014)
  •  
  • 14. Ho TH, Wang CS, Eur. Polym. J., 37, 267 (2001)
  •  
  • 15. Noijen S, Engelen R, Martens J, Opran A, Sluis O, Silfhout R, Microelectron. Reliab., 50, 917 (2010)
  •  
  • 16. Li T, Qin HJ, Liu Y, Zhong XH, Yu YF, Serra A, Polymer, 53(25), 5864 (2012)
  •  
  • 17. Kim YJ, Ahn BG, Kim WN, Suh KS, Kim WG, Yoon HG, Polym.(Korea), 26(1), 88 (2002)
  •  
  • 18. Sato Y, Kodera Y, Goto J, Matsui Y, Polym. Degrad. Stabil., 78, 315 (2002)
  •  
  • 19. Pan GY, Du ZJ, Zhang C, Li C, Yang XP, Li HQ, Polymer, 48(13), 3686 (2007)
  •  
  • 20. Ren H, Sun JZ, Wu BJ, Zhou QY, Polymer, 47(25), 8309 (2006)
  •  
  • 21. Wang JH, Liang GZ, Yan HX, He SB, Express Polym. Lett., 2, 118 (2008)
  •  
  • 22. Hwang HJ, Li CH, Wang CS, Polymer, 47(4), 1291 (2006)
  •  
  • 23. Hsiue GH, Wei HF, Shiao SJ, Kuo WJ, Sha YA, Polym. Degrad. Stabil., 73, 309 (2001)
  •  
  • 24. Lin CH, Chiang JC, Wang CS, J. Appl. Polym. Sci., 88(11), 2607 (2003)
  •  
  • 25. Tseng FP, Chang FC, Lin SF, Lin JJ, J. Appl. Polym. Sci., 74(9), 2196 (1999)
  •  
  • 26. Ardebili H, Pecht MG, Encapsulation Technologies for Electronic Applications, William Andrew, New York, p.47 (2009).
  •  
  • 27. Choi CH, Sohn BH, Chang JH, J. Ind. Eng. Chem., 19(5), 1593 (2013)
  •  
  • 28. Dennis HR, Hunter DL, Chang D, Kim S, White JL, Cho JW, Paul DR, Polymer, 42(23), 9513 (2001)
  •  
  • 29. Davis CH, Mathias LJ, Gilman JW, Schiraldi DA, Shields JR, Trulove P, Sutto TE, Delong HC, J. Polym. Sci. B: Polym. Phys., 40(23), 2661 (2002)
  •  
  • 30. Chang JH, Kim SJ, Im S, Polymer, 45(15), 5171 (2004)
  •  
  • 31. Chang JH, Mun MK, Lee IC, J. Appl. Polym. Sci., 98(5), 2009 (2005)
  •  
  • 32. Jung MH, Kim JC, Chang JH, Polym.(Korea), 31(5), 428 (2007)
  •  
  • 33. Galgali G, Ramesh C, Lele A, Macromolecules, 34(4), 852 (2001)
  •  
  • 34. Chang JH, Seo BS, Hwang DH, Polymer, 43(10), 2969 (2002)
  •  
  • 35. Lebaron PC, Wang Z, Pinnavaia TJ, Appl. Clay Sci., 15, 11 (1999)
  •  
  • 36. Kwon K, Chang JH, Polym.(Korea), 38(2), 232 (2014)
  •  
  • 37. Shin J, Kim JC, Chang JH, Polym. Eng. Sci., 51(4), 679 (2011)
  •  
  • 38. Chaiko DJ, Leyva AA, Chem. Mater., 17, 13 (2005)
  •  
  • 39. Carrera-Figueiras C, Aguilar-Vega M, J. Polym. Sci. B: Polym. Phys., 43(19), 2625 (2005)
  •  
  • 40. Zoppi RA, das Neves S, Nunes SP, Polymer, 41(14), 5461 (2000)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2015; 39(5): 705-713

    Published online Sep 25, 2015

  • 10.7317/pk.2015.39.5.705
  • Received on Jan 19, 2015
  • Accepted on Mar 16, 2015