Article
  • Thermal and Electrical Properties of Surface-treated Copper Nanowire/Epoxy Composites
  • Ahn K, Kim K, Kim J, Cho WC
  • 표면 개질된 구리 나노 와이어/에폭시 복합체의 열 및 전기 특성 분석
  • 안기상, 김기호, 김주헌, 조원철
Abstract
Copper nanowire (CuNW) composites were prepared to use as thermal interface material by using both raw copper nanowire particles and surface-coated copper nanowire particles. The surfaces of the copper nanowire particles were coated with SiO2 and TiO2 to enhance the thermal and electrical properties in the epoxy matrix. The surface coated CuNW and raw CuNW were characterized by XPS, EDX, FE-SEM and FE-TEM. The surface coated CuNW composites possessed enhanced thermal conduction properties as compared to the composites with raw CuNW particles. In addition, the electrical conductivity of the surface treated CuNW composites presented lower electrical conductivity values as compared to the raw CuNW composites. Thus, the surface coated copper nanowire composites prepared in the present work could be desirable as thermal interface materials in the electronics industry.

표면을 개질한 구리 나노 와이어(CuNW)를 이용하여 구리 나노 와이어/에폭시 복합체를 제작하였다. 에폭시매트릭스에서의 열적 특성과 전기적 특성을 향상시키기 위하여 CuNW의 표면을 SiO2와 TiO2로 개질하였다. 순수한 CuNW와 표면 개질된 CuNW의 기능화 여부 확인을 위하여 XPS, EDX, FE-SEM, FE-TEM 분석을 시행하였으며 CuNW 표면에 SiO2 층과 TiO2 층이 생성된 것을 확인하였다. 순수한 CuNW와 개질된 CuNW를 각각 첨가한 복합체를 제작하여 열전도 특성을 비교하였으며 표면 개질한 CuNW를 첨가한 복합체에서 증가된 열전도도를 갖는 것을 확인하였다. 또한 개질된 CuNW를 사용하였을 때 전기전도도가 감소하는 것을 확인하였다.

Keywords: thermal conductivity; electrical conductivity; copper nanowire; surface treatment

References
  • 1. Lin W, Moon KS, Wong CP, Adv. Mater., 21(23), 2421 (2009)
  •  
  • 2. Mamunya Y, Boudenne A, Lebovka N, Ibos L, Candau Y, Lisunova M, Compos. Sci. Technol., 68, 1981 (2008)
  •  
  • 3. Yu A, Ramesh P, Itkis ME, Bekyarova E, Haddon RC, J. Phys. Chem. C, 111, 7565 (2007)
  •  
  • 4. Shi Z, Radwan M, Kirihara S, Miyamoto Y, Jin Z, Appl. Phys. Lett., 95, 224104 (2009)
  •  
  • 5. Li TL, Hsu SLC, J. Phys. Chem. B, 114(20), 6825 (2010)
  •  
  • 6. Zhi CY, Bando Y, Terao T, Tang CC, Kuwahara H, Golberg D, Adv. Funct. Mater., 19(12), 1857 (2009)
  •  
  • 7. Yang F, Zhao X, Xiao P, J. European Ceram. Soc., 30, 3111 (2010)
  •  
  • 8. Heo GY, Rhee KY, Park SJ, Polym.(Korea), 35(6), 548 (2011)
  •  
  • 9. Wang S, Cheng Y, Wang R, Sun J, Gao L, ACS Appl. Mater. Interfaces, 6, 6481 (2014)
  •  
  • 10. Kim J, Im H, Han J, Kim J, Polym.(Korea), 36, 22 (2011)
  •  
  • 11. Cui W, Du F, Zhao J, Zhang W, Yang Y, Xie X, Mai YW, Carbon, 49, 459 (2011)
  •  
  • 12. Yuen SM, Ma CCM, Chuang CY, Hsiao YH, Chiang CL, Yu AD, Compos. Pt. A-Appl. Sci. Manuf., 39, 119 (2008)
  •  
  • 13. Ahn K, Kim K, Kim J, Ceram. Int., 41, 9488 (2015)
  •  
  • 14. Wang CX, Mao HY, Wang CX, Fu SH, Ind. Eng. Chem. Res., 50(21), 11930 (2011)
  •  
  • 15. Park SJ, Interfacial Forces and Fields Theory and Applications, Hsu JP, Editor, Marcel Dekker, New York, 1999.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2015; 39(6): 961-966

    Published online Nov 25, 2015

  • 10.7317/pk.2015.39.6.961
  • Received on Jun 13, 2015
  • Accepted on Aug 20, 2015