Article
  • Synthesis and Adsorption Properties of Carboxymethyl Lignin with Irradiated Lignin by Electron Beam
  • Lee JY, Lee YJ, Kang PH, Jeun JP
  • 전자선이 조사된 리그닌을 이용한 카르복시메틸 리그닌의 합성 및 흡착 특성
  • 이진영, 이영주, 강필현, 전준표
Abstract
Carboxymethyl lignin (CML) as an adsorbent was synthesized via caboxymethylation using an irradiated lignin at dose of 300 kGy. FTIR and NMR spectroscopy were utilized to confirm the structural change of lignin by an electron beam. The successful introduction of carboxylic acid group into the lignin surface was confirmed by FTIR. Potentiometric titration method was examined to determine the degree of substitution (DS) of carboxylic acid group of lignin surface. The results indicated that the degree of substitution in the prepared CML increases to the use of an irradiated lignin. Zeta potential and adsorption rate were utilized to characterize the surface activity and adsorption properties of prepared CML.

리그닌에 전자선을 300 kGy로 조사하고 적외선 분광분석과 핵자기공명 분석을 이용하여 리그닌의 특성변화를 분석하였다. 조사된 리그닌에 카르복시메틸화 반응으로 카르복시기를 도입하여 흡착제로 사용하기 위한 카르복시메틸리그닌(CML)을 제조하였다. 적외선 분광분석으로 리그닌에 카르복시기가 성공적으로 도입되었음을 확인하였고, 첨가제 함량 및 전자선 조사가 CML의 치환율에 미치는 영향을 평가하였다. 제조 조건별 CML을 제조하고 전위차 적정법으로 치환율을 분석하여 첨가제의 주입 조건을 최적화하였다. 마지막으로 치환율이 다른 CML에 대한 그라파이트의 흡착에 있어 용액의 pH가 미치는 영향을 평가하기 위해 pH에 따른 CML과 그라파이트의 표면활성 및 CML에 대한 그라파이트의 흡착률을 측정하였다.

Keywords: carboxymethyl lignin; electron beam; degree of substitution; surface activity; adsorption

References
  • 1. Amidon TE, Wood CD, Shupe AM, Wang Y, Graves M, Liu S, J. Biobased Mater. Bio., 2, 199 (2008)
  •  
  • 2. Yuan TQ, He J, Xu F, Sun RC, Polym. Degrad. Stabil., 94, 1142 (2009)
  •  
  • 3. Gosselink RJA, De Jong E, Guran B, Ind. Crop. Prod., 20, 121 (2004)
  •  
  • 4. Methacanon P, Chaikumpollert O, Thavorniti P, Suchiva K, Carbohydr. Polym., 54, 335 (2003)
  •  
  • 5. Sarkanen KV, Ludwig CH, Lignins: Occurrence, Formation, Structure, and Reactions, Dekker, New York, 1971.
  •  
  • 6. Cateto CA, Barreiro MF, Rodrigues AE, Belgacem MN, Ind. Eng. Chem. Res., 48(5), 2583 (2009)
  •  
  • 7. Sadeghifar H, Cui CZ, Argyropoulos DS, Ind. Eng. Chem. Res., 51(51), 16713 (2012)
  •  
  • 8. Guo XY, Zhang SZ, Shan XQ, J. Hazard. Mater., 151(1), 134 (2008)
  •  
  • 9. Mohan D, Pittman CU, Steele PH, J. Colloid Interface Sci., 297(2), 489 (2006)
  •  
  • 10. Srivastava SK, Singh AK, Sharma A, Environ. Technol., 15, 353 (1994)
  •  
  • 11. Suhas, Carrott PJM, Carrott MMLR, Bioresour. Technol., 98(12), 2301 (2007)
  •  
  • 12. Cerrutti BM, de Souza CS, Castellan A, Ind. Crop. Prod., 36, 108 (2012)
  •  
  • 13. Gan L, Zhou M, Yang D, Qiu X, Holzforschung, 67, 379 (2012)
  •  
  • 14. Gan L, Zhou M, Yang D, Qiu X, Iran. Polym. J., 23, 47 (2014)
  •  
  • 15. Sohn JY, Lim JS, Gwon SJ, Shin JH, Choi JH, Nho YC, Polymer, 32, 6 (2008)
  •  
  • 16. Kuzina SI, Shilova IA, Ivanov VF, Nikol`skii SN, Shcherban AN, Mikhailov AI, High Energ. Chem., 47, 192 (2013)
  •  
  • 17. Bhattacharya A, Prog. Polym. Sci, 25, 371 (2000)
  •  
  • 18. O'Connell DW, Birkinshaw C, O'Dwyer TF, Bioresour. Technol., 99(15), 6709 (2008)
  •  
  • 19. Pushpamalar V, Langford SJ, Ahmad M, Lim YY, Carbohydr. Polym., 64, 312 (2006)
  •  
  • 20. Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W, Comprehensive Cellulose Chemistry: Analytical Methods in Cellulose Chemistry, Wiley, Wiley Interscience, 1998.
  •  
  • 21. Wu Y, Zhang S, Guo X, Huang H, Bioresour. Technol., 99, 16 (2008)
  •  
  • 22. Liu Q, Laskowski JS, Int. J. Miner. Process., 26, 297 (1989)
  •  
  • 23. Liu Q, Laskowski JS, J. Colloid Interface Sci., 130, 101 (1989)
  •  
  • 24. Weisseborn PK, Warren LJ, Dunn JG, Colloids Surf. A: Physicochem. Eng. Asp., 99, 11 (1995)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2016; 40(1): 70-76

    Published online Jan 25, 2016

  • 10.7317/pk.2016.40.1.70
  • Received on Aug 7, 2015
  • Accepted on Nov 23, 2015