Article
  • Emulsion Polymerization of Pressure-Sensitive Acrylic Adhesives Using Alkali-Soluble Resin as a Polymeric Emulsifier and Their Characterization
  • Kwon J, Park S, Kim S, Jo J, Han C, Park K, Ha KR
  • 알칼리 가용수지를 고분자 유화제로 사용한 아크릴계 점착제의 유화중합 및 그 물성
  • 권재범, 박성환, 김성훈, 조지은, 한창우, 박경태, 하기룡
Abstract
There has been a growing demand on aqueous-type adhesives due to environmental concerns for solvent-type adhesives. However, low molecular weight emulsifiers remaining after polymerization can be transferred to the adhesive coating surface lowering water-resistance and adhesive strength of adhesives for emulsion polymerized aqueous-type adhesives. To overcome these disadvantages, we used alkali-soluble resin (ASR), which had a lower migration rate due to large molecular structure of ASR to polymerize 2-EHA, n-BA, MMA and AAc as monomers to make a pressure sensitive adhesive (PSA). We measured the change of peel strength, initial tack and holding power of PSA according to aging time at constant temperature/humidity (85 oC/85%) conditions. We found almost no change in the time variation of the above physical properties of PSA prepared with ASR. We also confirmed that 15 times larger average particle size and 2.8 times higher molecular weight for the PSA made with ASR than the one made with low molecular weight emulsifiers.

최근 용제형 대신 수계형 점착제의 수요가 증가하고 있지만, 유화중합 후 잔류하는 저분자 유화제가 점착제 코팅 표면으로 전이되어 내수성과 점착 강도를 저하시키는 문제점들이 있다. 본 연구에서는 이러한 단점들을 극복하기 위하여 큰 분자 구조로 인해 이동 속도가 낮은 고분자 유화제인 알칼리 가용수지(alkali-soluble resin, ASR)를 사용하여 2-EHA, n-BA, MMA와 AAc를 단량체로 사용한 점착제를 중합하였다. 또한 저분자 유화제인 sodium dodecyl sulfate(SDS)와 Triton X-114을 질량비 3:2로 혼용하여 점착제를 중합하여 물성을 서로 비교하였다. 합성된 점착제들을 항온(85 oC)/항습(상대습도 85%) 조건에서 숙성시간에 따른 박리강도, 초기 점착력 및 유지력 변화를 측정한 결과 고분자 유화제로 제조된 점착제는 위 물성들의 경시변화가 거의 없고 평균 분자량과 평균 입도는 저분자 유화제로 제조된 점착제보다 각각 2.8배와 15배 높아졌다.

Keywords: alkali soluble resin; emulsifier; emulsion polymerization; pressure sensitive adhesive

References
  • 1. Lee HJ, Jang SH, Chang SM, Kim JM, Korean Chem. Eng. Res., 48(5), 609 (2010)
  •  
  • 2. Song JH, Park SJ, Park SK, Lee MC, Lim JC, J. Korean Ind. Eng. Chem., 10(4), 523 (1999)
  •  
  • 3. Park MC, Lee MC, Polym.(Korea), 27(6), 596 (2003)
  •  
  • 4. Sim MK, Seul SD, Polym.(Korea), 33(1), 45 (2009)
  •  
  • 5. Lee KC, Polym.(Korea), 20(3), 476 (1996)
  •  
  • 6. Lee DY, Kim JH, J. Polym. Sci., 36(15), 2865 (1998)
  •  
  • 7. Lee DY, Kim JH, Min TI, Colloids Surf. A: Physicochem. Eng. Asp., 153, 89 (1999)
  •  
  • 8. Hwu HD, Lee YD, J. Polym. Res., 9, 183 (2002)
  •  
  • 9. Joo YT, Jung KH, Kim Y, Polym.(Korea), 35(5), 395 (2011)
  •  
  • 10. Jeong DS, Nam BU, Polym.(Korea), 35(1), 17 (2011)
  •  
  • 11. Chung HS, Park GH, Kim TY, Ahn HJ, Kim DH, Mol. Cryst. Liq. Cryst., 583, 43 (2013)
  •  
  • 12. Lee SH, Lee SK, Hwang TS, Appl. Chem. Eng., 24(2), 148 (2013)
  •  
  • 13. Lim TK, Lee MC, Korean Chem. Eng. Res., 52(3), 289 (2014)
  •  
  • 14. Lee S, Ha K, Polym.(Korea), 38(2), 257 (2014)
  •  
  • 15. Ko KS, Lee JY, Shim JK, Lee JY, J. Nanosci. Nanotechnol., 13, 7467 (2013)
  •  
  • 16. Hwu HD, Lee YD, J. Polym. Res., 7, 155 (2000)
  •  
  • 17. Suchocka-Galas K, J. Appl. Polym. Sci., 89(1), 55 (2003)
  •  
  • 18. Issam AM, Poh BT, Abdul Khalil HPS, Lee WC, J. Polym. Environ., 17, 165 (2009)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2016; 40(1): 77-84

    Published online Jan 25, 2016

  • 10.7317/pk.2016.40.1.77
  • Received on Aug 12, 2015
  • Accepted on Sep 20, 2015