Article
  • Study on Hypochlorite Production Using Newly Synthesized Bipolar Membranes in Electrolysis Process
  • Jeon YS, Rhim JW
  • 전기투석공정에서 새로운 바이폴라막을 이용한 차염발생 연구
  • 전이슬, 임지원
Abstract
In the current study, both aminated polysulfone (APSf) and poly(ether imide) (APEI) were synthesized in accordance with the amination degree of the anion exchange membranes, and as for cation exchange membrane, sulfonated poly(ether ether ketone) (SPEEK) was synthesized as well. The two types of bipolar membranes of APSf/SPEEK and APEI/SPEEK relative to the amination degree with a double-casting method were prepared to carry out the hypochlorite formation electrodialysis process. It was found that the hypochlorite concentration increased as the amination degree increased. Typically, the hypochlorite production concentration of 124.7 ppm at 5 mA/cm2 was observed for the APSf/SPEEK (3:1) membranes whereas 59.6 ppm concentration was shown at the same current density for APEI/SPEEK (3:1). APSf/SPEEK membranes were superior to APEI/SPEEK membranes from the aspect of hypochlorite formation concentration because the ion exchange capacity (IEC) of APSf/SPEEK is higher than that of APEI/SPEEK.

본 연구에서는 음이온교환 고분자로서 아민화된 폴리설폰과 폴리이서이미드를 아민화도에 따라 각각 합성하였으며, 양이온교환 고분자로서 설폰화된 폴리이서이서케톤을 합성하였다. 아민화율에 따라 2가지 형태인 APSf/SPEEK와 APEI/SPEEK 등의 바이폴라막이 더블캐스팅법으로 제조되어 차아염소산 생성을 위한 전기투석 공정에 적용되었다. 아민화도가 증가할수록 차염농도가 증가함을 알 수 있었으며 대표적으로 전류밀도 5 mA/cm2에서 APSf/SPEEK(3:1) 막이 차염농도 124.7 ppm을 생성시켰으며 반면에 APEI/SPEEK(3:1) 막은 같은 전류밀도에서 59.6 ppm의 차염을 생성시켰다. APSf/SPEEK 막이 차염생성 측면에서 APEI/SPEEK 막보다 우수한 것으로 나타났는데 이는 APSf/SPEEK 막의 이온교환용량이 APEI/SPEEK 막의 값보다 높기 때문인 것으로 사료된다.

Keywords: aminated polysulfone; aminated poly(ether imide); sulfonated poly(ether ether ketone); bipolar membranes; hypochlorite; electrodialysis

References
  • 1. Kim MY, Kim KJ, Kang H, Appl. Chem. Eng., 21(6), 621 (2010)
  •  
  • 2. Xu TW, J. Membr. Sci., 263(1-2), 1 (2005)
  •  
  • 3. Choi JH, Moon SH, Membr. J., 12, 143 (2002)
  •  
  • 4. Rozendal RA, Sleutels T, Hamelers HVM, Buisman CJN, Water Sci. Technol., 57, 1757 (2008)
  •  
  • 5. Kim JS, Cho EH, Rhim JW, Park CJ, Park SG, Membrane Water Treatment, 6, 27 (2015)
  •  
  • 6. Kim YJ, Jang JE, Lee SW, Cha SJ, Korea J. Org. Res. Recycling Assoc., 21, 43 (2013)
  •  
  • 7. Yoon JY, Byun SJ, Lee SD, J. KWWQ, 13, 283 (1997)
  •  
  • 8. Lee YJ, Lee SJ, Lee DC, Kim H, Lee H, Lee CH, Nam SH, J. Environ. Health Soc., 28, 1 (2002)
  •  
  • 9. Yan LJ, traber MG, Kobuchi H, Matsugo S, Arch. Biochem. Biophys., 67, 1451 (2003)
  •  
  • 10. Brandt F, Bosbach D, Krawczyk-Barsch E, Arnold T, Bernhard G, Geochim. Cosmochim. Acta, 15, 1451 (2003)
  •  
  • 11. Lazarova V, Savoye P, Janex ML, Blatchley ER, Pommepuy M, Water Sci. Technol., 40, 203 (1999)
  •  
  • 12. Kim SH, J. Kor. Soc. Environ. Eng., 36, 685 (2014)
  •  
  • 13. Sonja S, Slavoliub Z, Wei Q, Hui Z, Markus H, J. Endod., 36, 449 (2008)
  •  
  • 14. Fukuzaki S, Biocontrol Sci., 11, 147 (2006)
  •  
  • 15. Khan AU, Kasha M, Proc. Natl. Acad. Sci. U.S.A., 91, 12362 (1994)
  •  
  • 16. Wang F, Hickner M, Kim YS, Zawodzinski TA, McGrath JE, J. Membr. Sci., 197(1-2), 231 (2002)
  •  
  • 17. Kang MS, Kim JH, Won J, Moon SH, Kang YS, J. Membr. Sci., 247(1-2), 127 (2005)
  •  
  • 18. Agel E, Bouet J, Fauvarque JF, J. Power Sources, 101(2), 267 (2001)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2016; 40(1): 142-147

    Published online Jan 25, 2016

  • 10.7317/pk.2016.40.1.142
  • Received on Oct 7, 2015
  • Accepted on Nov 1, 2015