Communication
  • Biomimetic Self-assembly of Porphyrin-conjugated Polyaspartamide in Aqueous Solution
  • Cho YN, Kim HJ, Cho SW, Shin SG, Jeong JH
  • 포르피린이 접목된 폴리아미노산 유도체를 이용한 자기조립체에 관한 연구
  • 조윤나, 김희진, 조성우, 신성규, 정재현
Abstract
Nano-sized self-assemblies with various morphologies are being extensively studied to use them in a variety of biological and industrial applications including targeted drug delivery. This study reports a novel strategy to prepare selfassemblies with high aspect ratio by varying packing structure. We synthesized poly(2-hydroxyethyl aspartamide) (PHEA) grafted with porphyrins, which could form self-assemblies in an aqueous solution. Then, increasing the degree of substitution of porphyrins induced the structural transition to rod-like assemblies with an aspect ratio of 10 by inter/intra molecular π-π stacking of porphyrins. Further introduction of metalloporphyrins to PHEA leads to an uptake of oxygen molecules. This strategy strategy to prepare polymer self-assemblies will serve to improve the efficiency of targeted delivery for a molecular optical and ultrasound imaging with various biomedical modalities.

수용액상에서 다양한 형태를 갖는 자기조립 나노입자는 그 형태적 특이성으로 말미암아 표적지향 약물전달을 포함하여 다양한 응용분야에서 활발하게 연구되고 있다. 본 연구에서는 나노입자의 종횡비(aspect ratio)를 제어하는 새로운 자기조립 형성 기법을 확인하였다. 수용액상에서 자기조립 나노입자를 형성할 수 있는 포르피린이 접목된(grafted) 폴리아미노산 유도체를 합성하였다. 판상구조를 갖는 포르피린 분자의 접목도를 조절하여, 종횡비가 10 이상이 되는 막대형태의 자기조립 나노입자를 제조하였다. 포르피린이 도입된 자기조립나노입자는 산소분자를 선택적으로 포집할 수 있기 때문에 초음파 및 다양한 영상 진단을 위한 표적지향 전달체로 활용 될 수 있다.

Keywords: polyaspartamide; porphyrin; self-assembly; degree of substitution

References
  • 1. Discher DE, Eisenberg A, Science, 297, 967 (2002)
  •  
  • 2. Patra CR, Bhattacharya R, Mukhopadhyay D, Mukherjee P, Adv. Drug Deliv. Rev., 62, 346 (2010)
  •  
  • 3. Meng FH, Zhong ZY, Feijen J, Biomacromolecules, 10(2), 197 (2009)
  •  
  • 4. Lai MH, Jeong JH, DeVolder RJ, Brockman C, Schroeder C, Kong H, Adv. Funct. Mater., 22(15), 3239 (2012)
  •  
  • 5. Toy R, Hayden E, Shoup C, Baskaran H, Karathanasis E, Nanotechnology, 22, 115101 (2011)
  •  
  • 6. Suslick KS, Rakow NA, Kosal ME, Chou JH, J. Porphyrins Phthalocyanines, 4, 407 (2000)
  •  
  • 7. Liu CY, Pan HL, Tang HJ, Fox MA, Bard AJ, J. Phys. Chem., 99(19), 7632 (1995)
  •  
  • 8. Jeong JH, Kang HS, Yang SR, Park K, Kim JD, Colloids Surf. A: Physicochem. Eng. Asp., 264, 187 (2005)
  •  
  • 9. Yang SR, Jeong JH, Park K, Kim JD, Colloid Polym. Sci., 281, 852 (2003)
  •  
  • 10. Lee HJ, Yang SR, An EJ, Kim JD, Macromolecules, 39(15), 4938 (2006)
  •  
  • 11. Creighton TE, Proteins; structure and molecular principles, Freeman WH, New York, 1983.
  •  
  • 12. Lovell JF, Jin CS, Huynh E, Jin HL, Kim C, Rubinstein JL, Chan WCW, Cao WG, Wang LV, Zheng G, Nat. Mater., 10(4), 324 (2011)
  •  
  • 13. Lemon CM, Karnas E, Han X, Bruns OT, Kempa TJ, Fukumura D, Bawendi MG, Jain RK, Duda DG, Nocera DG, J. Am. Chem. Soc., 137, 9832 (2015)
  •  
  • 14. Huh J, Jo WH, Polym. Korea, 30(6), 453 (2006)
  •  
  • 15. Jeong JH, Cha C, Kaczamarowki A, Oh S, Kong HJ, Soft Matter, 8, 2237 (2012)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2016; 40(2): 163-166

    Published online Mar 25, 2016

  • 10.7317/pk.2016.40.2.163
  • Received on Dec 24, 2015
  • Accepted on Dec 31, 2015