Article
  • Effects of Kenaf Fibers Coated with Aluminum Trihydroxide on Limiting Oxygen Index and Thermal and Mechanical Properties of Biocomposites
  • Woo Y, Cho D
  • Aluminum Trihydroxide로 코팅된 케나프섬유가 바이오복합재료의 한계산소지수와 열적, 기계적 특성에 미치는 영향
  • 우연회, 조동환
Abstract
The effects of aluminum trihydroxide (ATH) coating on kenaf fibers on the properties such as limiting oxygen index, thermal stability, thermal expansion, dynamic mechanical properties, and tensile properties of biocomposites composed of kenaf fibers and poly(lactic acid) (PLA) are studied. It has been found that with increasing the ATH coating concentration the kenaf fiber surfaces are changed and the surfaces become rougher as there is an increase in the surface area due to the distributed ATH particles. The ATH coating on the kenaf fibers results in the enhancement of not only limiting oxygen index (LOI), which is closely relevant to retardancy, but also thermal stability, thermo-dimensional stability, storage modulus, and tensile properties of kenaf fiber/PLA biocomposites, depending on the ATH coating concentration. ATH coating with an appropriate concentration significantly contributes to imparting fire resistance and also to reinforcing this biocomposite system.

천연섬유와 poly(lactic acid)(PLA)로 구성된 바이오복합재료의 한계산소지수, 열안정성, 열팽창, 동역학특성, 인장특성에 미치는 여러 농도의 aluminum trihydroxide(ATH)로 코팅한 케나프섬유의 영향을 연구하였다. ATH 코팅농도가 증가함에 따라 케나프섬유 표면이 변화되며, 분포된 ATH 입자들에 의해 표면이 더 rough해지고 표면적도 높게 관찰되었다. 케나프섬유의 ATH 코팅은 케나프섬유/PLA 바이오복합재료의 한계산소지수(LOI) 뿐만 아니라 열안정성, 열치수안정성, 저장탄성률과 인장특성을 향상시키며, 이는 ATH 코팅농도에 따라 좌우된다. 적절한 농도의 ATH 코팅이 바이오복합재료에 난연성을 부여하는 동시에 보강효과에도 중요하게 기여하였다.

Keywords: biocomposites; kenaf fiber; poly(lactic acid); limiting oxygen index; material properties; aluminum trihydroxide coating

References
  • 1. Mohanty AK, Misra M, Hinrichsen G, Macromol. Mater. Eng., 276, 1 (2000)
  •  
  • 2. Cho D, Lee SG, Park WH, Han SO, Polym. Sci. Technol., 13(4), 460 (2002)
  •  
  • 3. Saharil J, Sapuan SM, Mater. Sci. Eng., 31, 166 (2011)
  •  
  • 4. Mohanty AK, Misra M, Drzal LT, Natural Fibers, Biopolymers, and Biocomposites, Taylor & Francis, New York, 2005.
  •  
  • 5. Bledzk AK, Gassan J, Prog. Polym. Sci, 24, 221 (1999)
  •  
  • 6. Mohanty AK, Misra M, Drzal LT, J. Polym. Environ., 11, 19 (2002)
  •  
  • 7. Faruk O, Bledzki AK, Fink HP, Sain M, Prog. Polym. Sci, 37, 1552 (2012)
  •  
  • 8. Athijayamani A, Ganesamoorthy R, Loganathan KT, Sidhardhan S, Polym. Korea, 40(1), 1 (2016)
  •  
  • 9. Huda MS, Drzal LT, Mohanty AK, Misra M, Compos. Sci. Technol., 68, 424 (2008)
  •  
  • 10. Boopalan M, Umapathy MJ, Jenyfer P, Silicon, 4, 145 (2012)
  •  
  • 11. Zhang ZX, Zhang J, Lu BX, Xin ZX, Kang CK, Kim JK, Compos. Pt. B, 43, 150 (2012)
  •  
  • 12. Sain M, Park SH, Suhara F, Law S, Polym. Degrad. Stabil., 83, 363 (2004)
  •  
  • 13. Han SO, Cho D, Park WH, Drzal LT, Compos. Interfaces, 13(2-3), 231 (2006)
  •  
  • 14. Cho D, Seo JM, Park WH, Han SO, Hwang TW, Choi CH, Jung SJ, J. Biobased Mater. Bioener., 1, 331 (2007)
  •  
  • 15. Cho D, Lee HS, Han SO, Drzal LT, Adv. Compos. Mater., 16, 315 (2007)
  •  
  • 16. Lee HS, Cho D, Han SO, Macromol. Res., 16(5), 411 (2008)
  •  
  • 17. Cho D, Lee HS, Han SO, Compos. Interfaces, 16(7-9), 711 (2009)
  •  
  • 18. Cho D, Yoon SB, Drzal T, Compos. Interfaces, 16(7-9), 769 (2009)
  •  
  • 19. Ji SG, Hwang JH, Cho D, Kim HJ, J. Adhes. Sci. Technol., 27(12), 1359 (2013)
  •  
  • 20. Cho D, Kim HJ, Drzal LT, “Surface Treatment and Characterization of Natural Fiber: Effects on the Properties of Biocomposites”, in Polymer Composites: Biocomposites, Thomas S, Joseph K, Malhotra SK, Goda K, Sreekala MS, Editors, Wiley-VCH Verlag GmbH & Co, Weinhein, Vol 3, Chapter 4, p 133 (2013).
  •  
  • 21. Kim Y, Cho D, Park WH, Kwon OH, J. Biobased Mater Bioener., 8, 261 (2014)
  •  
  • 22. Matko S, Toldy A, Keszei S, Anna P, Bertalan G, Marosi G, Polym. Degrad. Stabil., 88, 138 (2005)
  •  
  • 23. Jang J, Chung H, Kim M, Sung H, Polym. Test, 19, 269 (2000)
  •  
  • 24. Garcia M, Hidalgo J, Garmendia I, Carcia-Jaca J, Compos. Pt. A-Appl. Sci. Manuf., 40, 1772 (2009)
  •  
  • 25. Cardenas MA, Garcia-Lopez D, Gobernado-Mitre I, Polym. Degrad. Stabil., 93, 2032 (2008)
  •  
  • 26. Wang L, Ren J, Zhang X, Yang X, Yang W, Polym. Korea, 39(3), 359 (2015)
  •  
  • 27. ISO 4589 2, Plastic - Determination of Burning Behaviour by Oxygen Index: Part 2: Ambient-Temperature Test.
  •  
  • 28. Laoutid F, Bonnaud L, Alexandre M, Lopez-Cuesta JM, Dubois P, Mater. Sci. Eng. R-Rep., 63, 100 (2009)
  •  
  • 29. Grand AF, Wilkie CA, Fire Retardancy of Polymeric Materials, Marcel Dekker, New York, 2000.
  •  
  • 30. Cho D, Yoon SB, Drzal T, Compos. Interfaces, 16(7-9), 769 (2009)
  •  
  • 31. Ji SG, Cho D, Park WH, Lee BC, Macromol. Res., 18(9), 919 (2010)
  •  
  • 32. Han YH, Han SO, Cho D, Kim HI, Compos. Interfaces, 14(5-6), 559 (2007)
  •  
  • 33. Woo Y, MS Thesis, Kumoh National Institute of Technology, Gumi, Korea (2013).
  •  
  • 34. Auras R, Kim LT, Selke SEM, Tsuji H, Poly(lactic acid): Synthesis, Structures, Properties, Processing, and Applications, Wiley & Sons, New York, 2010.
  •  
  • 35. Dittenber DB, Gangarao HVS, Compos. Pt. A-Appl. Sci. Manuf., 43, 1419 (2012)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2016; 40(4): 568-576

    Published online Jul 25, 2016

  • 10.7317/pk.2016.40.4.568
  • Received on Jan 17, 2016
  • Accepted on Mar 16, 2016