Article
  • Synthesis of Conjugated Oligomer Based on Benzothiadiazole and Its Application of Organic Solar Cells
  • Shin W, Kim YH, Sylvianti N, Marsya MA, Putri DS, Moon DK, Kim JH
  • Benzothiadiazole을 기본골격으로 한 공액형 올리고머 합성 및 유기태양전지 응용
  • 신웅, 김윤환, Sylvianti N, Marsya MA, Putri DS, 문두경, 김주현
Abstract
Acceptor (A) - donor (D) - acceptor (A) type conjugated small molecule based on 2,1,3-benzothiadiazole and silofluorene (2,7-bis[5-(7-methyl-benzo[1,2,5]thiadiazol-4-yl)-thiophen-2-yl]-9-(9,9-dioctyl)-9H-silofluorene, SiF-BT) is synthesized for application in organic solar cells (OSCs). Even though two thiophene rings are introduced as the π-extender, SiF-BT exhibits a wide band gap of 2.26 eV due to weak intramolecular charge transfer between SiF and BT. The HOMO and LUMO energy levels of SiF-BT figured out from the cyclic voltammogram and UV-Visible spectrum are -5.43 and -3.17 eV, respectively. Optimized OSCs with a blend of SiF-BT:PC71BM (3:6) exhibits a power conversion efficiency (PCE) of 0.53% with a short-circuit current density of -2.06 mA/cm2, fill factor of 29.8%, and open-circuit voltage of 0.90 V.

2,1,3-benzothiadiazole(BT)과 silofluorene(SiF)을 기본골격으로 하는 acceptor(A) - donor(D) - acceptor(A) 형태의 공액형(conjugated) 분자(SiF-BT)를 합성하였다. 공액결합의 길이를 늘여 주기 위하여 두 개의 thiophene을 SiF와 BT 사이에 도입하였으나 밴드갭은 꽤 큰 2.26 eV에 불과하였다. 이는 SiF와 BT 사이의 intramolecular charge transfer 의 정도가 작기 때문이라 판단된다. 순환전압전류법 및 흡수분광법을 이용하여 측정한 SiF-BT의 HOMO 및 LUMO 에너지 준위는 각각 -5.43 and -3.17 eV이며, 최적화된 유기태양전지의 효율은 0.53%(단락전류=-2.06 mA/cm2, 충진인자=29.8%, 개방전압=0.90 V)임을 확인하였다.

Keywords: conjugated oligomer; silofluorene; benzothiadiazole; organic solar cell

References
  • 1. Mishra A, Bauerle P, Angew. Chem.-Int. Edit., 51, 2020 (2012)
  •  
  • 2. Wessendorf CD, Rodriguez AP, Hanisch J, Arndt AP, Ata I, Schulz GL, Quintilla A, Bauerle P, Lemmer U, Wochner P, Ahlswede E, Barrena E, J. Mater. Chem., 4, 2571 (2016)
  •  
  • 3. Zhou C, Liang YM, Liu F, Sun C, Huang XL, Xie ZQ, Huang F, Roncali J, Russell TP, Cao Y, Adv. Funct. Mater., 24(47), 7538 (2014)
  •  
  • 4. Yuan L, Zhao YF, Zhang JQ, Zhang YJ, Zhu LY, Lu K, Yan W, Wei ZX, Adv. Mater., 27(28), 4229 (2015)
  •  
  • 5. Fitzner R, Mena-Osteritz E, Mishra A, Schulz G, Reinold E, Weil M, Korner C, Ziehlke H, Elschner C, Leo K, Riede M, Pfeiffer M, Uhrich C, Bauerle P, J. Am. Chem. Soc., 134(27), 11064 (2012)
  •  
  • 6. Ku J, Lansac Y, Jang YH, J. Phys. Chem. C, 115, 21508 (2011)
  •  
  • 7. Park G, Ryu I, Yim S, Bull. Korean Chem. Soc., 32, 943 (2011)
  •  
  • 8. Tregnago G, Steckler TT, Fenwick O, Andersson MR, Cacialli F, J. Mater. Chem. C, 3, 2792 (2015)
  •  
  • 9. Marzari G, Durantini J, Minudri D, Gervaldo M, Otero L, Fungo F, Pozzi G, Cavazzini M, Orlandi S, Quici S, J. Phys. Chem. C, 116, 21190 (2012)
  •  
  • 10. Rodrigues PC, Berlim LS, Azevedo D, Saavedra NC, Prasad PN, Schreiner WH, Atvars TDZ, Akcelrud L, J. Phys. Chem. A, 116, 3681 (2012)
  •  
  • 11. Mori D, Benten H, Ohkita H, Ito S, Miyake K, ACS Appl. Mater. Interfaces, 4, 3325 (2012)
  •  
  • 12. Michaleviciute A, Degbia M, Tomkeviciene A, Schmaltz B, Gurskyte E, Grazulevicius JV, Boucle J, Tran-Van F, J. Power Sources, 253(-), 230 (2014)
  •  
  • 13. Lu J, Xia PF, Lo PK, Tao Y, Wong MS, Chem. Mater., 18, 6194 (2006)
  •  
  • 14. Blouin N, Michaud A, Gendron D, Wakim S, Blair E, Neagu-Plesu R, Belletete M, Durocher G, Tao Y, Leclerc M, J. Am. Chem. Soc., 130(2), 732 (2008)
  •  
  • 15. Sudyoadsuk T, Pansay S, Morada S, Rattanawan R, Namuangruk S, Kaewin T, Jungsuttiwong S, Promarak V, Eur. J. Org. Chem., 5051 (2013)
  •  
  • 16. Kim JB, Allen K, Oh SJ, Lee S, Toney MF, Kim YS, Kagan CR, Nuckolls C, Loo YL, Chem. Mater., 22, 5762 (2010)
  •  
  • 17. Haid S, Mishra A, Uhrich C, Pfei M, Bauerle P, Chem. Mater., 23, 4435 (2011)
  •  
  • 18. Yamamoto NAD, Lavery LL, Nowacki BF, Grova IR, Whiting GL, Krusor B, Azevedo ER, Akcelrud L, Arias AC, Roman LS, J. Phys. Chem. C, 116, 18641 (2012)
  •  
  • 19. Kumar D, Thomas KRJ, Lee C, Ho K, J. Org. Chem., 79, 3159 (2014)
  •  
  • 20. Huang H, Youn J, Ortiz RP, Zheng Y, Facchetti A, Marks T, Chem. Mater., 23, 2185 (2011)
  •  
  • 21. Yamaguchi S, Tamao K, Bull. Chem. Soc. Jpn., 69, 2327 (1996)
  •  
  • 22. Song S, Choi HI, Shin IS, Hyun MH, Suh H, Park SS, Park SH, Jin Y, Bull. Korean Chem. Soc., 35, 2963 (2014)
  •  
  • 23. Jorgensen M, Krebs FC, J. Org. Chem., 70, 6004 (2005)
  •  
  • 24. Chan KL, McKiernan MJ, Towns CR, Holmes AB, J. Am. Chem. Soc., 127(21), 7662 (2005)
  •  
  • 25. Shin W, Park JH, Lim GE, Sylvianti N, Ahn BH, Kim JH, Synth. Met., 210, 201 (2015)
  •  
  • 26. Xue J, Uchida S, Rand BP, Forrest SR, Appl. Phys. Lett., 84, 3013 (2004)
  •  
  • 27. Mihailetchi VD, van Duren JKJ, Blom PWM, Hummelen JC, Janssen RAJ, Kroon JM, Rispens MT, Verhees WJH, Wienk MM, Adv. Funct. Mater., 13(1), 43 (2003)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2016; 40(6): 960-966

    Published online Nov 25, 2016

  • 10.7317/pk.2016.40.6.960
  • Received on Jun 19, 2016
  • Accepted on Jul 16, 2016