Article
  • Hybrid Nanocomposites of Bridged Polysilsesquioxane Nanoparticles and Polystyrene by Radical Polymerization
  • Ha TS, Hwang IS, Bang YH, Kim KY, Lim JH, Kim SR, Kim KM
  • 라디칼 중합을 이용한 폴리스티렌과 브릿지드 폴리실세스퀴옥세인 나노입자와의 유-무기 복합체 제조 및 분석
  • 하태성, 황인설, 방윤혁, 김기영, 임정혁, 김성룡, 김경민
Abstract
Bridged polysilsesquioxane (BPS) particles with thiol groups (BPS-SH) were prepared by the reduction of BPS particles with disulfide groups (BPS-S-S) made from hydrolysis and condensation reaction of bis[3-(triethoxysilyl) propyl]-disulfide under ammonia and alcoholic solutions. BPS-SH and triethylene glycol dimethacrylate (TEGDMA) were reacted to synthesize BPS containing TEGDMA group (BPS-TEGDMA) by UV irradiation at 365 nm. BPSTEGDMA was spherical, and the average size was around 200-300 nm. Hybrid BPS-TEGDMA/PS nanocomposites were fabricated by radical polymerization of BPS-TEGDMA and styrene with AIBN as a radical initiator. The surface of BPS-TEGDMA covered with PS increased the hydrophobicity of BPS nanoparticles. The structure and morphology of BPS-TEGDMA/PS nanocomposites were characterized by infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscope (SEM), and transmission electron microscope (TEM).

티올 그룹을 함유한 구형의 브릿지드 폴리실세스퀴옥세인 나노입자(BPS-SH)는 bis[3-(triethoxysilyl)propyl]-disulfide를 암모니아와 알코올 용매 하에서 가수분해와 축합 반응 후 얻어진 브릿지드 폴리실세스퀴옥세인 나노입자(BPS-S-S)의 환원 반응을 통하여 제조하였다. BPS-SH와 triethylene glycol dimethacrylate(TEGDMA)에 365 nm 파장을 가진 UV를 조사하여 TEGDMA 그룹을 함유한 브릿지드 폴리실세스퀴옥세인 나노입자(BPS-TEGDMA)를 얻을 수 있었다. 합성된 BPS 나노입자는 구형의 형태를 띠고, 평균 입자크기는 200-300 nm를 나타내었다. 이렇게 얻어진 BPS-TEGDMA와 스티렌 단량체를 AIBN 개시제 하에서 중합시켜 BPS 나노입자에 폴리스티렌을 성장시킨 새로운 유-무기 복합체(BPS-TEGDMA/PS)를 합성하였다. BPS 나노입자 표면은 폴리스티렌으로 덮여있어 소수성이 증가하는 것을 확인할 수 있었다. 제조된 BPS-TEGDMA/PS의 구조 및 표면 분석은 FTIR, TGA, SEM, TEM과 같은 다양한 분석장비를 이용하여 수행하였다.

Keywords: bridged polysilsesquioxane (BPS); radical polymerization; hybrid nanocomposites; UV irradiation; hydrophobicity

References
  • 1. Shea KJ, Loy DA, Chem. Mater., 13, 3306 (2001)
  •  
  • 2. Shea KJ, Moreau J, Loy DA, Webster O, J. Am. Chem. Soc., 114, 6700 (1992)
  •  
  • 3. Oviatt HW, Shea JKJ, Small JH, Chem. Mater., 5, 943 (1993)
  •  
  • 4. Shea KJ, Moreau J, Loy DA, Corriu RJP, Boury B, Funct. Hybrid Mater., 50, 50 (2004)
  •  
  • 5. Hu LC, Yonamine Y, Lee SH, van der Veer WE, Shea KJ, J. Am. Chem. Soc., 134(27), 11072 (2012)
  •  
  • 6. Loy DA, Beach JV, Baugher BM, Assink RA, Chem. Mater., 11, 3333 (1999)
  •  
  • 7. Loy DA, Shea KJ, Chem. Rev., 95(5), 1431 (1995)
  •  
  • 8. Jain V, Khiterer M, Montazami R, Yochum HM, Shea KJ, Heflin JR, ACS Appl. Mate. Inter., 1, 83 (2009)
  •  
  • 9. Lee ASS, Choi SS, Baek KY, Hwang SS, Macromol. Res., 23(1), 60 (2015)
  •  
  • 10. Yuen SM, Ma CCM, Teng CC, Wu HH, Kuan HC, Chiang CL, J. Polym. Sci. B: Polym. Phys., 46(5), 472 (2008)
  •  
  • 11. Park DS, Ha TS, Kim KY, Lim JH, Kim KM, Polym. Bull., 71(4), 819 (2014)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2016; 40(6): 992-997

    Published online Nov 25, 2016

  • 10.7317/pk.2016.40.6.992
  • Received on Aug 2, 2016
  • Accepted on Sep 8, 2016