Article
  • Preparation and Characterization of AEMA Grafted PCL Nanofibers Using Gamma-ray Irradiation
  • Seo DE, Jeong SI, Park JS, Gwon HJ, An SJ, Lee BH, Im DS, Shin H, Lim YM
  • 감마선 이용 AEMA 도입 PCL 나노섬유의 제조 및 특성분석
  • 서다은, 정성린, 박종석, 권희정, 안성준, 이병헌, 임돈순, 신흥수, 임윤묵
Abstract
Polycaprolactone (PCL) has been applied to tissue engineering because it has excellent biocompatibility and biodegradable properties. However, there is a limit to hydrophobic surface and low cell adhesion, therefore the PCL requires surface modification for increasing hydrophilicity and cell adhesion capacity. In this study, PCL films and nanofibers were manufactured by solvent casting and electrospinning, respectively. They were modified by 2-aminoethylmethacrylate (AEMA) that had hydrophilicity and amine groups of positive charge using gamma-irradiation. The surface properties of AEMA-grafted PCL films and nanofibers were confirmed by ATR-FTIR, and amine groups were increased by surface area and gamma-irradiation dose. A significantly higher amount of negative-charged proteins adhered to hydrophilic and cationic surface of AEMA-grafted PCL nanofibers than that of AEMA-grafted PCL films, because of increased amine groups and electrostatic interaction. The results show that AEMA-grafted PCL nanofibers are possible to apply tissue engineering scaffolds.

폴리카프로락톤(polycaprolactone, PCL)은 생체적합성이 우수하고 시간이 지나면 체내에서 생분해되어 조직공학용 생체재료로 많이 사용되고 있다. 하지만, 소수성 표면과 낮은 세포 부착성을 나타내는 단점이 있다. 따라서 본 연구에서는 PCL 필름 및 전기방사를 통한 나노섬유 지지체를 제조하고 감마선을 이용하여 친수성과 양전하의 아민기를 갖는 2-아미노에틸메타크릴레이트(2-aminoethylmethacrylate, AEMA)로 표면을 개질하였다. 감마선을 이용하여 표면 개질된 PCL 필름과 나노섬유의 분석 결과, ATR-FTIR을 통해 감마선 선량과 반응 표면적이 증가할수록 표면의 아민기가 증가함을 확인하였다. 아민기의 증가로 인해 친수성이 증가했음을 확인하였고 단백질 흡착량이 정전기적 인력으로 인해 증가함을 확인하였다. 이를 통해 AEMA가 도입된 PCL 필름보다 나노섬유 지지체의 경우 세포적합성이 향상된 조직공학용 지지체로서의 응용 가능성이 매우 높을 것으로 기대된다.

Keywords: polycaprolactone; 2-aminoethylmethacrylate; surface modification; positive charge; gamma irradiation

References
  • 1. Ko IK, Yoo JJ, Anthony A, Lee SJ, Polym. Sci. Technol., 22, 17 (2011)
  •  
  • 2. Shin YM, Shin H, Polym. Sci. Technol., 18(5), 458 (2007)
  •  
  • 3. Lee JH, Kim HW, KSBMB News, 9, 32 (2011)
  •  
  • 4. Bourget JM, Gauvin R, Larouche D, Lavoie A, Labbe R, Auger FA, Germain L, Biomaterials, 33, 9205 (2012)
  •  
  • 5. Karuppuswamy P, Venugopal JR, Navaneethan B, Laiva AL, Sridhar S, Ramakrishna S, Appl. Surf. Sci., 322(-), 162 (2014)
  •  
  • 6. Wang X, Ding B, Li B, Mater. Today., 16, 229 (2013)
  •  
  • 7. Mikos AG, Temenoff JS, Electron. J. Biotechnol., 3, 1 (2000)
  •  
  • 8. Zang S, Zhang R, Chen H, Lu Y, Zhou J, Chang X, Qiu G, Wu Z, Yang G, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 46, 111 (2015)
  •  
  • 9. Park SA, Lee JH, Kim W, Elast. Compos., 44, 106 (2009)
  •  
  • 10. Kang TY, Hong JM, Kim BJ, Cha HJ, Cho DW, Acta Biomater., 9, 4716 (2013)
  •  
  • 11. Xu CY, Inai R, Kotaki M, Ramakrishna S, Biomaterials, 25, 877 (2004)
  •  
  • 12. Jeong SI, Kwon JH, Lim JI, Cho SW, Jung Y, Sung WJ, Kim SH, Kim YH, Lee YM, Kim BS, Choi CY, Kim SJ, Biomaterials, 26, 1405 (2005)
  •  
  • 13. Yang HS, Park K, Ahn KD, Kim BS, Han DK, Polym. Korea, 30(2), 168 (2006)
  •  
  • 14. Kim SK, Jung SH, Jung SH, Seong H, Chi SC, Cho SH, Shin BC, J. Korean Chem. Soc., 52, 57 (2008)
  •  
  • 15. Sung JH, Kim SS, Kim YS, Lyou NY, Jeong KS, Shin SY, Woo YK, J. Korean Orthop. Assoc., 32, 919 (1997)
  •  
  • 16. Ohgaki M, Kizuki T, Katsura M, Yamashita K, J. Biomed. Mater. Res., 57, 366 (2001)
  •  
  • 17. Davies JE, Causton B, Bovell Y, Davy K, Sturt CS, Biomaterials, 7, 231 (1986)
  •  
  • 18. Park JS, Lim YJ, J. Korean Acad. Osseointegr., 5, 5 (2013)
  •  
  • 19. Kim DY, Park H, Lee KY, Polym. Korea, 39(3), 412 (2015)
  •  
  • 20. Dowsing DP, Miller IS, Ardhaoui M, Gallagher WM, J. Biomater. Appl., 26, 327 (2011)
  •  
  • 21. Jeon S, Noh H, Polym. Korea, 36, 338 (2011)
  •  
  • 22. Shin YM, Shin H, Lim YM, Macromol. Res., 18(5), 472 (2010)
  •  
  • 23. Lee JH, Kim SK, Polym. Korea, 21(2), 332 (1997)
  •  
  • 24. Vesel A, Mozetic M, Vacuum, 86, 643 (2012)
  •  
  • 25. Proskurovsky DI, Rotshtein VP, Ozur GE, Ivanov YF, Markov AB, Surf. Coat. Technol., 12, 49 (2000)
  •  
  • 26. Choi J, Jung HJ, Park BJ, Joung YK, Park K, Han DK, Polym. Korea, 36, 357 (2011)
  •  
  • 27. Xu J, Liang Q, Xian X, Li K, Liu J, Polym. Korea, 39(1), 1 (2015)
  •  
  • 28. Choi JH, Lee YJ, Lim YM, Kang PH, Shin J, Nho YC, Polym. Sci. Technol., 18(3), 253 (2007)
  •  
  • 29. Ping X, Wang M, Ge X, Radiat. Phys. Chem., 80, 567 (2011)
  •  
  • 30. Choi JB, Jeong SI, Gwon HJ, Park JS, Nho YC, Choi YH, Park KJ, Park MY, Shin H, Lim YM, J. Radiat. Ind., 6, 159 (2012)
  •  
  • 31. Shin YM, Kim KS, Lim YM, Nho YC, Shin H, Biomacromolecules, 9(7), 1772 (2008)
  •  
  • 32. Xu J, Liang Q, Xian X, Li K, Liu J, Polym. Korea, 39(1), 1 (2015)
  •  
  • 33. Jeong SI, Krebs MD, Bonino CA, Khan SA, Alsberg E, Macromol. Biosci., 10, 934 (2010)
  •  
  • 34. Woo JH, Seo YS, Yoon KJ, Text. Sci. Eng., 43, 107 (2006)
  •  
  • 35. Higuchi A, Sugiyama K, Yoon BO, Sakurai M, Hara M, Sumita M, Sugawara S, Shirai T, Biomaterials, 24, 3235 (2003)
  •  
  • 36. Jeong SI, Jeong JO, Choi JB, Shin YM, Park JS, Gwon HJ, Nho YC, An SJ, Park MY, Lim YM, Tissue Eng., 11, 56 (2014)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2017; 41(1): 143-150

    Published online Jan 25, 2017

  • 10.7317/pk.2017.41.1.143
  • Received on Oct 26, 2016
  • Accepted on Nov 15, 2016