Article
  • Self-folding of Multi-layered Hydrogel Designed for Biological Machine
  • Cho SW, Shin SG, Kim HJ, Han SR, Jeong JH
  • 다층 하이드로젤 자가접힘에 따른 생체로봇 설계 및 특성 분석
  • 조성우, 신성규, 김희진, 한사라, 정재현
Abstract
The biological machine was designed to self-transform using a multi-layered hydrogel. The biological machine legs consisting of two layers with different swelling ratios were fabricated to have 5.3 mm of radius of curvature by selffolding assembly at 37 °C. The hydrogels patterned with three different geometries by the micro-contact printing could influence the differentiation process and alignment of C2C12 skeletal myoblasts. The cells on the linear patterns resulted in the 3.6-fold increase of the contractile force with 1.12±0.30 μN, as compared to the cells on the circle patterns with 0.31±0.32 μN of contractile force. Overall, this new strategy to prepare the biological machine with the multi-layered hydrogel would be actively used in drug delivery, tissue engineering, environmental engineering, and biomimetic engineering, etc.

다층 하이드로젤을 사용하여 자가변환이 가능한 생체로봇을 설계하였다. 온도에 따른 팽윤비 차이를 이용하여 37 °C에서 자가접힘에 의해 5.3 mm의 곡률반경을 갖는 생체로봇의 다리 부분을 제조하였다. 미세접촉프린팅 (μCP) 방법으로 세 가지 다른 형태로 파이브로넥틴이 패턴된 하이드로젤을 제조하여 근관세포로의 분화 및 정렬에 미치는 영향을 확인하였다. 생체로봇은 3D printer를 이용하여 다리부분은 두 층으로 몸통부분은 단층으로 구성된 3차원 구조로 제조하였다. 다리부분에 원형 패턴으로 분화된 근관세포의 수축력은 0.31±0.32 μN 값을 보인 반면, 100 μm 두께의 선형 패턴으로 분화된 근관세포의 수축력은 1.12±0.30 μN 값을 보여 약 3.6배 강한 것을 확인할 수 있었다. 다층 하이드로젤 기반의 자가변환 생체로봇은 약물전달, 조직공학, 환경공학 및 생체모방공학 분야에 다양하게 활용될 수 있다.

Keywords: hydrogel; biological machine; self-folding; contractile force

References
  • 1. Carmel M, Soft Robotics, 1, 5 (2013)
  •  
  • 2. Shepherd RF, Ilievski F, Choi W, Morin SA, Stokes AA, Mazzeo AD, Chen X, Wang M, Whitesides GM, Proc. Natl. Acad. Sci. USA, 108, 20400 (2011)
  •  
  • 3. Ijspeert AJ, Crespi A, Ryczko D, Cabelguen J, Science, 315, 1416 (2007)
  •  
  • 4. Chan V, Jeong JH, Bajaj P, Collens M, Saif T, Kong H, Bashir R, Lap Chip, 12, 88 (2012)
  •  
  • 5. Chan V, Asada HH, Bashir R, Lab Chip, 14, 653 (2014)
  •  
  • 6. Chan V, Park K, Collens MB, Kong H, Saif TA, Bashir R, Sci. Rep., 2, 857 (2012)
  •  
  • 7. Rus D, Tolley MT, Nature, 521(7553), 467 (2015)
  •  
  • 8. Park SJ, Gazzola M, Park KS, Park S, Di Santo V, Blevins EL, Lind JU, Campbell PH, Dauth S, Capulli AK, Pasqualini FS, Ahn S, Cho A, Yuan HY, Maoz BM, Vijaykumar R, Choi JW, Deisseroth K, Lauder GV, Mahadevan L, Parker KK, Science, 353(6295), 158 (2016)
  •  
  • 9. Cvetkovic C, Raman R, Chan V, Williams BJ, Tolish M, Bajaj P, Sakar MS, Asada HH, Saif MTA, Bashir R, Proc. Natl. Acad. Sci. USA, 111, 10125 (2014)
  •  
  • 10. Chan V, Zorlutuna P, Jeong JH, Kong H, Bashir R, Lab Chip, 10, 2062 (2010)
  •  
  • 11. Cha C, Antoniadou E, Lee M, Jeong JH, Ahmed WW, Saif TA, Boppart SA, Kong H, Angew. Chem.-Int. Edit., 125, 7087 (2013)
  •  
  • 12. Yoon H, Lee J, Polym. Korea, 36(4), 455 (2012)
  •  
  • 13. Bassik N, Abebe BT, Laflin KE, Gracias DH, Polymer, 51(26), 6093 (2010)
  •  
  • 14. Clyne TW, Key Eng. Mater., 116-117, 307 (1996)
  •  
  • 15. Baek K, Jeong JH, Shkumatov A, Bashir R, Kong H, Adv. Mater., 25(39), 5568 (2013)
  •  
  • 16. Kim HJ, Cho YN, Cho SW, Kim YG, Ryu HW, Jeong JH, Polym. Korea, 40(2), 321 (2016)
  •  
  • 17. Schmidt JJ, Jeong JH, Chan V, Cha C, Baek K, Lai MH, Bashir R, Kong H, Biomacromolecules, 14(5), 1361 (2013)
  •  
  • 18. Bajaj P, Reddy B, Millet L, Wei C, Zorlutuna P, Bao G, Bashir R, Integrative Biology, 3, 897 (2011)
  •  
  • 19. Chan V, Zorlutuna P, Jeong JH, Kong HJ, Bashir R, Lab Chip, 10, 2062 (2010)
  •  
  • 20. Shih WY, Li X, Gu H, Shih W, Aksay IA, J. Appl. Phys., 89, 1497 (2001)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2017; 41(2): 346-351

    Published online Mar 25, 2017

  • 10.7317/pk.2017.41.2.346
  • Received on Dec 19, 2016
  • Accepted on Dec 31, 2016