Article
  • Selective Adsorption and Reusability for Pb2+ of Chitosan-based Microporous Polymer
  • Yu J, Zheng J, Lu Q, Wang X, Zhang X, Wang Q, Yang W
  • 키토산 기반 미세다공성 고분자의 Pd2+에 대한 선택적 흡착성 및 재사용성
Abstract
A green and simple glow-discharge electrolysis plasma (GDEP) technique was used to synthesize the chitosan/ attapulgite/poly(acrylic acid-co-2-acrylamido-2-methyl-1-propanesulfonic acid) (CS/ATP/P(AA-co-AMPS)) microporous polymer. The results showed that the optimum pH for the adsorption of Pb2+, Cd2+, Co2+, and Cu2+ is 4.8, and time of adsorption equilibrium is 60 min. Adsorption kinetics fits well to the pseudo-second-order model. The maximum adsorption capacities for Pb2+, Cd2+, Cu2+ and Co2+ are 500.0, 301.7, 180.0 and 151.7 mg g-1, respectively. The microporous polymer has higher adsorption selectivity toward Pb2+ with the coexistence of Cd2+, Co2+, and Cu2+. The CS/ATP/P(AAco-AMPS) possesses promising regeneration and reusability using 2.0 g L-1 ethylenediamine tetraacetic acid tetrasodiumsalt (EDTA-4Na) solution as eluent. CS/ATP/P(AA-co-AMPS) can be used as a very promising absorbent for the separation, purification and selective recovery of Pb2+ in aqueous solution containing Cd2+, Co2+, and Cu2+ ions.

Keywords: chitosan; attapulgite; microporous polymer; adsorption selectivity; reusability

References
  • 1. Li N, Bai RB, Liu CK, Langmuir, 21(25), 11780 (2005)
  •  
  • 2. Ghoohestani S, Faghihian H, Desalin. Water. Treat., 57, 4049 (2016)
  •  
  • 3. Liu YM, Ju XJ, Xin Y, Zheng WC, Wang W, Wei J, Xie R, Liu Z, Chu LY, ACS Appl. Mater. Interfaces, 6, 9530 (2014)
  •  
  • 4. Fu F, Xie L, Tang B, Wang Q, Jiang S, Chem. Eng. J., 189-190, 283 (2012)
  •  
  • 5. Ying Y, Liu Y, Wang X, Mao Y, Cao W, Hu P, Peng X, ACS Appl. Mater. Interfaces, 7, 1795 (2015)
  •  
  • 6. Ozaki H, Sharma K, Saktaywin W, Desalination, 144(1-3), 287 (2002)
  •  
  • 7. Blocher C, Dorda J, Mavrov V, Chmiel H, Lazaridis NK, Matis KA, Water Res., 37, 4018 (2003)
  •  
  • 8. Essawy HA, Ibrahim HS, React. Funct. Polym., 61(3), 421 (2004)
  •  
  • 9. Khalili R, Shabanpoue F, Eisazadeh H, Adv. Polym. Technol., 33, 21389 (2014)
  •  
  • 10. Nguyen VS, Ho TYL, J. Chem. Technol. Biotechnol., 88, 1641 (2013)
  •  
  • 11. Tanhaei B, Ayati A, Bamoharram FF, Lahtinen M, Sillanpaa M, J. Chem. Technol. Biotechnol., 91(5), 1452 (2016)
  •  
  • 12. Park JK, Nah JW, Choi C, Polym. Korea, 39, 480 (2015)
  •  
  • 13. Alves NM, Mano JF, Int. J. Biol. Macromol., 43, 401 (2008)
  •  
  • 14. Qu JR, Zhang JJ, Gao YF, Yang H, Food Chem., 135, 1148 (2012)
  •  
  • 15. Ge H, Wang S, Carbohydr. Polym., 113, 296 (2014)
  •  
  • 16. Huacai G, Wan P, Dengke L, Carbohydr. Polym., 66, 372 (2006)
  •  
  • 17. Zhang J, Wang Q, Wang A, Carbohydr. Polym., 68, 367 (2007)
  •  
  • 18. Joshi JM, Sinha VK, Polymer, 42, 2198 (2006)
  •  
  • 19. Hosseinzadeh H, Alijani D, Polym. Korea, 38(5), 588 (2014)
  •  
  • 20. El-Sawy NM, El-Rehim HAA, Elbarbary AM, Hegazy ESA, Carbohydr. Polym., 79, 555 (2010)
  •  
  • 21. Casimiro MH, Botelho ML, Leal JP, Gil MH, Radiat. Phys. Chem., 72, 731 (2005)
  •  
  • 22. Yu J, Zheng JD, Lu QF, Yang SX, Zhang XM, Wang X, Yang W, Colloid Polym. Sci., 294, 1585 (2016)
  •  
  • 23. Yu J, Yang GG, Pan YP, Lu QF, Yang W, Gao JZ, Plasma Sources Sci. Technol., 16, 767 (2014)
  •  
  • 24. Yu J, Li Y, Lu QF, Zheng JD, Yang SX, Jin F, Wang QZ, Yang W, Iran Polym. J., 25, 423 (2016)
  •  
  • 25. Joshi RP, Thagard SM, Plasma Chem. Plasma Process., 33(1), 17 (2013)
  •  
  • 26. Brisset JL, Moussa D, Doubla A, Hnatiuc E, Hnatiuc B, Youbi GK, Herry JM, Naitali M, Bellon-Fontaine MN, Ind. Eng. Chem. Res., 47(16), 5761 (2008)
  •  
  • 27. Liu J, Wang Q, Wang A, Carbohydr. Polym., 70, 166 (2007)
  •  
  • 28. Qian L, Zhang H, Green Chem., 12, 1207 (2010)
  •  
  • 29. Heidari A, Younesi H, Mehraban Z, Heikkinen H, Int. J. Biol. Macromol., 61, 251 (2013)
  •  
  • 30. Zeng GM, Pang Y, Zeng ZT, Tang L, Zhang Y, Liu YY, Zhang JC, Lei XX, Li Z, Xiong YQ, Xie GX, Langmuir, 28(1), 468 (2012)
  •  
  • 31. He J, Lu YC, Luo GS, Chem. Eng. J., 244(-), 202 (2014)
  •  
  • 32. Sengil IA, Ozacar M, J. Hazard. Mater., 166(2-3), 1488 (2009)
  •  
  • 33. Kumar M, Tripathi BP, Shahi VK, J. Hazard. Mater., 172(2-3), 1041 (2009)
  •  
  • 34. Liu Y, Liu ZC, Gao J, Dai JD, Han JA, Wang Y, Xie JM, Yan YS, J. Hazard. Mater., 186(1), 197 (2011)
  •  
  • 35. Chen CY, Chen SY, J. Appl. Polym. Sci., 94(5), 2123 (2004)
  •  
  • 36. Xiao X, Hayashi F, Shiiba H, Selcuk S, Ishihara K, Namiki K, Shao L, Nishikiori H, Selloni A, Teshim K, J. Phys. Chem. C, 120, 11984 (2016)
  •  
  • 37. Laus R, Costa TG, Szpoganicz B, Favere VT, J. Hazard. Mater., 183(1-3), 233 (2010)
  •  
  • 38. Jeon C, Park KH, Water Res., 39, 3938 (2005)
  •  
  • 39. Ngah WSW, Teong LC, Toh RH, Hanafiah MAKM, Chem. Eng. J., 209(-), 46 (2012)
  •  
  • 40. Xu YY, Dang QF, Liu CS, Yan JQ, Fan B, Cai JP, Li JJ, Colloids Surf. A: Physicochem. Eng. Asp., 482, 353 (2015)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2017; 41(3): 480-489

    Published online May 25, 2017

  • 10.7317/pk.2017.41.3.480
  • Received on Oct 31, 2016
  • Accepted on Jan 7, 2017