Article
  • Comparison of Bulk Strength, Weldline Strength, and Deposition Strength of 3D Printing-manufactured Article in Fossil PCs and Bio-based PCs
  • Park SJ, Park JH, Lyu MY, Koo MS, Rho HJ, Cho SH
  • Fossil PC와 Bio-based PC의 Bulk 강도, Weldline 강도, 3D 프린팅 적층물의 적층강도 비교
  • 박성제, 박정현, 류민영, 구명술, 노형진, 조성환
Abstract
The deposition strength in FDM type 3D printing-manufactured specimen and the bulk and weldline strength in a specimen prepared by injection molding using fossil PCs and bio-based PCs were measured and compared. In the injection molded specimen, weldline strength and fracture elongation increased with increasing processing temperature. As for the results of the deposition direction tensile test, deposition strength and variation for fracture elongation in the 3D printing-manufactured specimen were marginal with an increase in processing temperature. On the other hand, the orthogonal to deposition direction tensile test revealed that both deposition strength and fracture elongation were proportional to processing temperature. The ratio of weldline strength and the strength in the orthogonal to deposition direction, which presented the lowest strength value in the 3D printing-manufactured specimen, was equivalent to 62.78% and 25.81% in fossil PCs and bio-based PCs, respectively. The ratio of strength in the deposition direction and orthogonal to deposition direction in the 3D printing-manufactured specimen was 69.97% and 51.52% in fossil PCs and bio-based PCs, respectively.

본 연구에서는 fossil PC와 bio-based PC를 이용하여 사출성형으로 제작한 시편에서 bulk 및 weldline 강도와 FDM 방식 3D 프린팅에서의 적층강도를 측정하고 비교하였다. Weldline 강도 시편의 경우 공정온도 증가에 따라 weldline 강도와 파단 시 연신율이 증가하였다. 3D 프린팅으로 적층된 시편의 경우 적층방향 인장 시험에서는 공정 온도 증가에 따라 적층강도와 파단 시 연신율의 변화가 미미하였다. 반면, 적층 직각방향의 인장시험에서는 공정온도 증가에 따라 적층강도와 파단 시 연신율이 비례적으로 증가하였다. 3D 프린팅으로 제작한 시편에서 가장 낮은 강도를 보이는 적층 직각방향의 강도는 weldline 강도 대비 각각 62.78%와 25.81%를 보였다. 그리고 3D 프린팅 시편에서 적층방향의 강도 대비 적층 직각방향의 강도의 비는 fossil PC와 bio-based PC에서 각각 69.97%와 51.52% 로 나타났다.

Keywords: fossil PC; bio-based PC; fused deposition modeling (FDM); 3D printing; deposition strength

References
  • 1. Jegal JG, The Monthly Packaging World, 178, 48 (2008)
  •  
  • 2. Kim MK, The Monthly Packaging World, 226, 45 (2012)
  •  
  • 3. Han JG, The Monthly Packaging World, 217, 57 (2011)
  •  
  • 4. Storz H, Vorlop KD, Appl. Agric. Forestry Res., 63, 321 (2013)
  •  
  • 5. Khoramnejadian S, Zavareh JJ, Khoramnejadian S, Procedia Eng., 21, 489 (2011)
  •  
  • 6. Setoyama T, Catal. Surv. Asia, 18, 183 (2014)
  •  
  • 7. Gallagher JJ, Hillmyer MA, Reineke TM, ACS Sustain. Chem. Eng., 4, 3379 (2016)
  •  
  • 8. Park SH, International Journal of Advanced Culture Technology, 2, 30 (2014).
  •  
  • 9. Rayna T, Striukova L, Technol. Forecast. Soc. Change, 102, 214 (2016)
  •  
  • 10. Park SH, Park JH, Lee HJ, Lee NK, J. Kor. Soc. Precis. Eng., 31, 1067 (2014)
  •  
  • 11. Lee SH, Kim NI, Lee JH, J. Comput. Struct. Eng. Inst. Korea, 28, 42 (2015)
  •  
  • 12. Gu Q, Hao J, Lu Y, Wang L, Wallance GG, Zhou Q, Science China, 58, 411 (2015)
  •  
  • 13. Lee JH, Park SA, Kim WD, Trans. Korean. Soc. Mech. Eng. C, 1, 21 (2013)
  •  
  • 14. , AAPG Bull.Kim HS, Kang IA, Journal of Korea Fashion and Costume Design Association, 17, 125 (2015).
  •  
  • 15. Lee SH, J. Korean Acad. Pediatr. Dent., 43, 93 (2016)
  •  
  • 16. ASTM F2792-12a: Standard Terminology for Additive Manufacturing Technologies (2013).
  •  
  • 17. Kim WH, Master’s Thesis, University of Korea Polytechnic, Gyeonggi (2015).
  •  
  • 18. Kim GD, Kim JY, Transact. Korean Soc. Machine Tool Eng., 15, 56 (2006)
  •  
  • 19. Sood AK, Ohdar RK, Mahapatra SS, Mater. Des., 31, 287 (2010)
  •  
  • 20. Masood SH, Mau K, Song WQ, Mater. Sci. Forum, 654, 2556 (2010)
  •  
  • 21. Leacock AG, Cowan G, Cosby M, Volk G, McCracken D, Brown D, Key Eng. Mater., 639, 325 (2015)
  •  
  • 22. Ahn DK, Kweon HJ, Kwon SM, Song JI, Lee SH, J. Mater. Process. Technol., 209, 5593 (2009)
  •  
  • 23. Anhua P, Adv. Mater., 538, 1564 (2012)
  •  
  • 24. Wang TM, Xi JT, Jin Y, Int. J. Adv. Manuf. Tech., 33, 1087 (2007)
  •  
  • 25. Ramanath HS, Chua CK, Leong KF, Shah KD, J. Mater. Sci. -Mater. Med., 19, 2541 (2008)
  •  
  • 26. Park SJ, Park JH, Lee KH, Lyu MY, Polym. Korea, 40, 1 (2016)
  •  
  • 27. Ahn SH, Montero M, Odell D, Roundy S, Wright PK, Rapid Prototyping J., 8, 428 (2002)
  •  
  • 28. Mo JH, Hong HS, Lyu MY, Trans. Mater. Process, 10, 211 (2003)
  •  
  • 29. Selden R, Polym. Eng. Sci., 37(1), 205 (1997)
  •  
  • 30. Wu CH, Liang WJ, Polym. Eng. Sci., 45(7), 1021 (2005)
  •  
  • 31. Turng LS, Kharbas H, Polym. Eng. Sci., 43(1), 157 (2003)
  •  
  • 32. Lee SC, Kim HS, Hong IK, Yoon YS, Korean J. Rheol., 9(4), 133 (1997)
  •  
  • 33. Sun Q, Rizvi GM, Bellehumeur CT, Gu P, Rapid Prototyping J., 14, 72 (2008)
  •  
  • 34. Reddy BV, Reddy NV, Ghosh A, Virtual Phys. Prototyp., 2, 51 (2007)
  •  
  • 35. Haid CM, Doctoral Dissertation, Massachusetts institute of Technology (2014).
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2017; 41(3): 531-538

    Published online May 25, 2017

  • 10.7317/pk.2017.41.3.531
  • Received on Dec 8, 2016
  • Accepted on Jan 17, 2017