Article
  • Inhibition Effect of Low Molecular Weight α-/β-Glucans Loaded Nanofibers on the Growth of Skin Cancer Cells
  • Kim YE, Kim YJ
  • 저분자량 α-/β-글루칸을 함유하는 나노섬유의 피부암 세포 성장 저해 효과
  • 김영은, 김영진
Abstract
The development of nanofibrous scaffolds containing biological agents is necessary to provide adequate conditions for tissue regeneration and to prevent the recurrence of cancer after surgical operations. Here we fabricated nanofibers composed of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), dextran, laminarin, hydrolyzed dextran, and hydrolyzed laminarin using an electrospinning process. The resulting nanofibers exhibited a fully interconnected pore structure. The water contact angles were reduced by the addition of low molecular weight glucans. The results from cell viability tests showed that the proliferation rate of melanomas on the nanofibers fabricated with 8:2 of PHBV and hydrolyzed laminarin (PHHL) was significantly suppressed by increased TNF-α secretion. However, the proliferation of skin fibroblasts on the PHHL nanofibers was effectively stimulated because of the antioxidant activity and hydrophilicity of hydrolyzed laminarin.

암조직의 외과적 수술 후에 절제 부위의 재생과 종양의 재발 방지를 위해서 적절한 미세환경을 제공해 줄 수 있는 생리활성 물질이 함유되어 있는 나노섬유 지지체의 개발이 요구되고 있다. 따라서 본 연구에서는 poly(3-hydroxybutyrate-co-3-hydroxyvalerate)(PHBV), 덱스트란, 라미나린 및 가수분해된 저분자량의 덱스트란과 라미나린을 이용하여 전기방사법으로 나노섬유를 제조하였다. 제조된 나노섬유는 상호연결된 기공구조를 보였으며, 가수분해된 저분자량 글루칸의 사용에 의해서 물접촉각이 낮아지는 것이 확인되었다. 나노섬유의 세포 성장에 미치는 영향을 조사한 결과 PHBV와 β-글루칸인 라미나린의 저분자량 구조체가 8:2로 함유되어 있는 나노섬유(PHHL)에서 악성흑색종 세포의 성장은 가장 억제되었지만, 정상 피부세포의 성장은 가장 촉진된다는 것을 확인하였다.

Keywords: glucan; low molecular weight; anticancer activity; skin cancer; nanofiber

References
  • 1. Greinert R, Boniol M, Prog. Biophys. Mol. Biol., 107, 473 (2011)
  •  
  • 2. Gordon R, Semin. Oncol. Nurs, 29, 160 (2013)
  •  
  • 3. Simoes MCF, Sousa JJS, Pais AACC, Cancer Lett., 357, 8 (2015)
  •  
  • 4. Shin DS, Kim US, J. Korean Bone Joint Tumor Soc., 17, 30 (2011)
  •  
  • 5. Whyte G, Evans AT, Surgery, 29, 480 (2011)
  •  
  • 6. Leung MVK, Liu C, Koon JCM, Fung KP, Immunol. Lett., 105, 101 (2006)
  •  
  • 7. Abou Zeid AH, Aboutabl EA, Sleem AA, El- Rafie HM, Carbohydr. Polym., 113, 62 (2014)
  •  
  • 8. Choi JI, Kim HJ, Lee JW, Food Chem., 129, 520 (2011)
  •  
  • 9. Autissier A, Le Visage C, Pouzet C, Chauber F, Letourneur D, Acta Biomater, 6, 3640 (2010)
  •  
  • 10. Fuentes AL, Millis L, Sigola LB, Int. Immunopharmacol., 11, 1939 (2011)
  •  
  • 11. Shah A, Masoodi FA, Gani A, Ashwar BA, Radiat. Phys. Chem., 117, 120 (2015)
  •  
  • 12. Pleszczynska M, Szczodrak J, Rogalski J, Fiedurek J, Mycol. Res., 101, 69 (1997)
  •  
  • 13. Giese EC, Covizzi LG, Dekker RFH, Monteiro NK, da Silva MDC, Barbosa AM, Process Biochem., 41(6), 1265 (2006)
  •  
  • 14. Unnithan AR, Barakat NAM, Pichiah PBT, Gnanasekaran G, Nirmala R, Cha YS, Jung CH, El-Newehy M, Kim HY, Carbohydr. Polym., 90, 1786 (2012)
  •  
  • 15. Kennouche S, Moigne NL, Kaci M, Quantin JC, Caro-Bretelle AS, Delaite C, Lopez-Cuesta JM, Eur. Polym. J., 75, 142 (2016)
  •  
  • 16. Fei B, Chen C, Wu H, Peng S, Wang X, Dong L, Eur. Polym. J., 39, 1939 (2003)
  •  
  • 17. Yoshie N, Saito M, Inoue Y, Macromolecules, 34(26), 8953 (2001)
  •  
  • 18. Wei JH, Yoshinari M, Takemoto S, Hattori M, Kawada E, Liu BL, Oda Y, J. Biomed. Mater. Res., 81B, 66 (2007)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2017; 41(4): 662-669

    Published online Jul 25, 2017

  • 10.7317/pk.2017.41.4.662
  • Received on Jan 10, 2017
  • Accepted on Feb 22, 2017