Article
  • Effect of Salts on the Thermal Stability of Physically Crosslinked Gelatin Hydrogels: DSC and Rheology Study
  • Zhang J, Qiao C, Ma X, Liu W, Liu Q
  • 물리적으로 가교된 젤라틴 하이드로젤의 열안정성에 대한 염의 효과: DSC와 유변학 특성
Abstract
The effects of preparation conditions, such as polymer concentration, annealing temperature, annealing time and pH, on the melting behavior of gelatin gels were investigated. An optimum condition of gel preparation for calorimetric test is obtained. In addition, the influence of salt including salt concentration and salt type on the melting behavior of gelatin gels was explored by DSC and rheometer. It was found that the melting temperature first increased and then decreased with an increase in salt concentration. This result indicates that electrostatic interactions are important for the formation and stability of gelatin gels. Moreover, the melting temperature of polymer gels with different salt addition conforms to the following orders: Na+

Keywords: gelatin gels; thermal stability; polyelectrolyte; rheology

References
  • 1. Ren SZ, Sorensen CM, Phys. Rev. Lett., 70, 1727 (1993)
  •  
  • 2. Harrington WF, Rao NV, Biochemistry, 9, 3714 (1970)
  •  
  • 3. Narayanan J, Deotare VW, Bandyopadhyay R, Sood AK, J. Colloid Interface Sci., 245(2), 267 (2002)
  •  
  • 4. Bohidar HB, Fundamentals of Polymer Physics and Molecular Biophysics, Cambridge University Press, Delhi, India, 2015.
  •  
  • 5. Kim HL, Hong M, Kim SJ, Jo H, Yoo IS, Lee D, Khang G, Polym. Korea, 35(5), 378 (2011)
  •  
  • 6. da Silva MA, Bode F, Grillo I, Dreiss CA, Biomacromolecules, 16(4), 1401 (2015)
  •  
  • 7. Tadeo X, Lo’pez-Me´ndez B, Castano D, Trigueros T, Millet O, Biophys. J., 67, 2595 (2009)
  •  
  • 8. Carrillo JMY, Dobrynin AV, Macromolecules, 44(14), 5798 (2011)
  •  
  • 9. Gornall JL, Terentjev EM, Soft Matter, 4, 544 (2008)
  •  
  • 10. Elharfaoui N, Djabourov M, Babel W, Macromol. Symp., 256, 149 (2007)
  •  
  • 11. Dranca I, Vyazovkin S, Polymer, 50(20), 4859 (2009)
  •  
  • 12. Michon C, Cuvelier G, Relkin P, Launay B, Int. J. Biol. Macromol., 20, 259 (1997)
  •  
  • 13. Djabourov M, Leblond J, Papon P, J. Phys. France, 49, 319 (1988)
  •  
  • 14. Hsu SH, Jamieson AM, Polymer, 34, 2602 (1993)
  •  
  • 15. Chatterjee S, Bohidar HB, Int. J. Biol. Macromol., 35, 81 (2005)
  •  
  • 16. Bello J, Ries HCA, Vinograd JR, J. Phys. Chem., 60, 1299 (1956)
  •  
  • 17. von Hippel PH, Wong KY, Science, 145, 577 (1964)
  •  
  • 18. Sarabia AI, Gomez-Guillen MC, Montero P, Food Chem., 70, 71 (2000)
  •  
  • 19. Sarbon NM, Cheow CS, Kyaw ZW, Howell NK, Int. Food Res. J., 21, 317 (2014)
  •  
  • 20. Asghar A, Henrickson RL, Academic Press, London, Vol 28, pp 232-372 (1982).
  •  
  • 21. Godard P, Biebuyck JJ, Daumerie M, Naveau H, Mercier JP, J. Polym. Sci. B: Polym. Phys., 16, 1817 (1978)
  •  
  • 22. Prado JR, Vyazovkin S, Macromol. Chem. Phys., 215, 867 (2014)
  •  
  • 23. Chen K, Vyazovkin S, Macromol. Biosci., 9, 383 (2009)
  •  
  • 24. Tsereteli GI, Smirnova OI, Polym. Sci., 33, 2112 (1991)
  •  
  • 25. Guo L, Colby RH, Lusignan CP, Howe AM, Macromolecules, 36(26), 10009 (2003)
  •  
  • 26. Chen K, Vyazovkin S, Macromol. Biosci., 9, 383 (2009)
  •  
  • 27. Russell AE, Biochem. J., 139, 277 (1974)
  •  
  • 28. Haug IJ, Draget KI, Smidsrød O, Food Hydrocolloids, 18, 203 (2004)
  •  
  • 29. Ledward DA, Food Sci. Tech. Today, 6, 236 (1992)
  •  
  • 30. Fernandez-Diaz MD, Food Chem., 74, 161 (2001)
  •  
  • 31. Choi SS, Regenstein JM, J. Food Sci., 65, 194 (2000)
  •  
  • 32. Sow LC, Yang HS, Food Hydrocolloids, 45, 72 (2015)
  •  
  • 33. Veis A, A. Veis, Editor, Academic Press, New York, pp 261-270 (1964).
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2017; 41(4): 702-708

    Published online Jul 25, 2017

  • 10.7317/pk.2017.41.4.702
  • Received on Jan 30, 2017
  • Accepted on Mar 13, 2017