Article
  • Porous Scaffold Coated with Poly(lactic acid-co-ε-caprolactone) on Chitosan Surface
  • Kim JH
  • 키토산 표면에 PLCL을 코팅한 다공성 지지체
  • 김지혜
Abstract
Chitosan, a natural polymer, has excellent water content and is widely used in drug delivery systems, food additives and coatings in various fields. However, it has a disadvantage in that it has poor mechanical properties and dissolves in an aqueous solution containing an acid. In this study, poly(lactic acid-co-ε-caprolactone) (PLCL) was coated on chitosan scaffold surface in order to increase the mechanical strength of chitosan. Surface structure of pure chitosan scaffold and chitosan/PLCL scaffold were analyzed with swelling test, water contact angle and drug delivery system (DDS). As a result, the surface pores of the chitosan/PLCL were formed with microcapsules of 10 to 100 μm, and the contact angle of the surface was 8°, showing hydrophilic properties. As a result, the chitosan/PLCL scaffold showed 1.1 times better DDS than the pure chitosan scaffold, and the mechanical strength and cell survival rate were 2 times higher. The results showed that the physical strength was increased by coating PLCL on the surface of pure chitosan, and the microporosity was formed by the salt leaching method to improve the water content and contact angle to improve the drug release function. It is considered that the present invention can be applied to various medical fields based on the result that biocompatibility is also increased by microporosity formation.

천연고분자인 키토산은 함수율이 뛰어나 약물전달 시스템이나 식품첨가제 및 코팅제로 다양한 분야에서 널리 사용되고 있다. 그러나 기계적 물성이 약하고, 산을 포함한 수용액에서 녹는다는 단점을 가지고 있다. 본 연구는 키토산의 기계적 강도를 높이기 위하여 키토산 지지체 표면에 poly(lactic acid-co-ε-caprolactone)(PLCL)을 코팅하여 그 특성들을 살펴보았다. 순수 키토산 지지체와 키토산/PLCL 지지체의 표면구조와 함수율, 접촉각, 약물거동, 인장력 등을 비교 분석하였다. 그 결과 키토산/PLCL의 표면기공은 10~100 μm의 미세기공으로 형성되어 있으며, 표면의 접촉각이 8°로 친수성의 성질을 띠는 결과를 나타냈다. 약물방출거동 평가결과 순수 키토산 지지체에 비해 키토산/PLCL 지지체가 1.1배 약물방출속도가 빠른 결과를 보였으며, 기계적 강도 및 세포생존율이 2배 높은 결과를 보였다. 순수 키토산 표면에 PLCL을 코팅함으로써 물리적 강도를 증가시켰으며, 염침출법에 의해 미세 다공성을 형성하여 함수율과 접촉각을 향상시켜 약물방출 기능을 향상하는데 도움이 되었다. 미세한 다공성 형성에 의해 세포친 화성 역시 증가하는 결과를 토대로 다양한 의료분야로 적용 가능하다고 사료된다.

Keywords: chitosan; poly(lactic acid-co-ε-caprolactone); scaffold; tensile stress

References
  • 1. Jennifer JM, Joseph U, Robert L, Vacanti PJ, Adv. Drug Deliv. Rev., 33, 165 (1988)
  •  
  • 2. Rim NG, Lee YB, Kim SJ, Shin H, Korean Ind. Chem. News, 13(6), 2 (2010)
  •  
  • 3. Ko IK, Yoo J, Atala A, Lee SJ, Polym. Sci. Technol., 22, 17 (2011)
  •  
  • 4. Choi SW, Zhang Y, Xia YN, Langmuir, 26(24), 19001 (2010)
  •  
  • 5. Yoo DJ, J. Kor. Soc. Prec. Eng., 28, 834 (2011)
  •  
  • 6. Li XM, Feng QL, Liu XH, Dong W, Cui FH, Biomaterials, 27, 1917 (2006)
  •  
  • 7. Kurita K, Marine Biotechnology, 8, 203 (2006)
  •  
  • 8. Kojima K, Okamoto Y, Kojima K, Miyatake K, Fujise H, Shigemasa Y, Minami S, J. Vet. Med. Sci., 66, 1595 (2004)
  •  
  • 9. Gelse K, Poschl E, Aigner T, Adv. Drug Deliv. Rev., 55, 1531 (2003)
  •  
  • 10. Kadler KE, Holmes DF, Trotter JA, Chapman JA, Biochem. J., 316, 1 (1996)
  •  
  • 11. Paul W, Sharma CP, S.T.P. Pharma Sci., 10, 5 (2000)
  •  
  • 12. Muzzarelli RAA, Natural Chelating Polymer, Pergamon Press, New York, 1973.
  •  
  • 13. Carrara CR, Rubiolo AC, Biotechnol. Prog., 10(2), 220 (1994)
  •  
  • 14. Kurada K, Sannan T, Wightnan JP, J. Appl. Polym. Sci., 23, 511 (1979)
  •  
  • 15. Denkbas EB, Seyyal M, Piskin E, J. Membr. Sci., 172(1-2), 33 (2000)
  •  
  • 16. Jianbiao M, Hongjun W, Binglin H, Jiatong C, Biomaterials, 22, 331 (2001)
  •  
  • 17. Cooper ML, Hansbrough JF, Spielvogel RL, Cohen R, Bartel RL, Naughton G, Biomaterials, 12, 243 (1991)
  •  
  • 18. Le Ray AM, chiffoleau S, Iooss P, Grimandi G, Gouyette A, Daculsi GT, Merle C, Biomaterials, 24, 443 (2003)
  •  
  • 19. Zhang Y, Zhuo R, Biomaterials, 26, 6736 (2005)
  •  
  • 20. Ahmed F, Discher DE, J. Control. Release, 96, 37 (2004)
  •  
  • 21. Khang G, Park CS, Rhee JM, Lee SJ, Lee YM, Choi MK, Lee HB, Lee I, Korea Polym. J., 9(5), 267 (2001)
  •  
  • 22. Jeong SI, Kwon JH, Lim JI, Cho SW, Jung Y, Sung WJ, Kim SH, Kim YH, Lee YM, Kim BS, Choi CY, Kim SJ, Biomaterials, 26, 1405 (2005)
  •  
  • 23. Choi YS, Lee SB, Hong SR, Lee YM, Song KW, Park MH, J. Mater. Sci., 12, 67 (2001)
  •  
  • 24. Shimojoh M, Fukushima K, Kurit D, Carbohydr. Polym., 35, 223 (1998)
  •  
  • 25. El-hefian EA, Nasef MM, Yahaya AH, E-J Chem., 9, 1431 (2012)
  •  
  • 26. Nirmala R, Il BW, Navamathavan R, El-Newehy MH, Kim HY, Macromol. Res., 19(4), 345 (2011)
  •  
  • 27. Inthanon K, Daranrong D, Techaikool P, Punyodom W, Khaniyao V, Bernstein M, Wongkham W, Stem Cells, 2016, 16 (2016)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2017; 41(4): 735-740

    Published online Jul 25, 2017

  • 10.7317/pk.2017.41.4.735
  • Received on Mar 14, 2017
  • Accepted on May 17, 2017