Article
  • Effect of Mixing Protocol on the Phase Structure of Nylon/PPE/Graphene Oxide Composites
  • Lee JW, Kim HS
  • 혼련 조건이 Nylon/PPE/Graphene Oxide 복합체의 상구조에 미치는 영향
  • 이정우, 김형수
Abstract
The microstructure of nylon/poly(phenylene ether) (PPE)/graphene oxide (GO) composites was investigated. The major interest was focused on the effect of mixing protocol on the dispersion and localization of GO in the composites. When the three components are blended at the same time or nylon/GO is premixed prior to the blending with PPE, GO particles were mainly placed in nylon phase. By contrast, when the premixed PPE/GO is blended with nylon, the state of GO dispersion was remarkably improved to yield an exfoliated structure. Furthermore, some of the GO were found at the interface of nylon and PPE. In this particular phase structure, the average domain sizes were significantly reduced and maintained stable after the annealing process. It was found that the shear sensitivity and storage moduli of the composite were increased and the crystallization of nylon was limited by the GO platelets located at the interface of nylon and PPE.

Nylon/poly(phenylene ether)(PPE)/graphene oxide(GO) 복합체를 제조할 경우에 일정한 함량(0.5 wt%)의 GO가 성분 고분자(PPE/nylon=10/90)와 혼련되는 순서에 따른 복합체의 미세구조 변화를 조사하였다. PPE, nylon, GO가 동시에 혼련되거나 미리 혼련된 nylon/GO를 PPE와 혼련시킬 경우에는 GO가 주로 nylon 상에 존재하였다. 이와는 대조적으로, PPE/GO를 먼저 혼련시킨 후 nylon과 다시 혼련시킬 경우에는 GO가 nylon과 PPE의 계면에 존재하는 경향을 나타내었으며 GO의 분산상태도 박리 구조에 가까운 우수한 분산성을 나타내었다. 이러한 상구조가 유지되는 복합체의 경우는 전자의 두 경우들과 비교했을 때, 분산상의 평균 입자 크기가 가장 작았으며 열처리후의 전체적인 상구조도 상대적으로 더 안정함을 보였다. 박리된 GO가 nylon과 PPE의 계면에 존재할 경우 점도의 전단율의존성과 저장탄성률이 가장 크게 나타났으며 nylon의 결정화가 제한적으로 진행되는 것으로 확인되었다.

Keywords: nylon; PPE; graphene oxide; phase morphology; nanocomposites

References
  • 1. Paul DR, Bucknall CB, Polymer Blends: Formulation and Performance, John Wiley & Sons, New York, 2000.
  •  
  • 2. Baker W, Scott C, Hu GH, Reactive Polymer Blending, Hanser, Munich, 2001.
  •  
  • 3. Taguet A, Cassagnau P, Lopez-Cuesta JM, Prog. Polym. Sci, 39, 1526 (2014)
  •  
  • 4. Pagnoulle C, Jerome R, Macromolecules, 34(4), 965 (2001)
  •  
  • 5. Kim H, Ryu JG, Lee JW, Korea-Australia Rheology J., 14, 121 (2002)
  •  
  • 6. Hong JS, Kim YK, Ahn KH, Lee SJ, Kim C, Rheol. Acta, 46(4), 469 (2007)
  •  
  • 7. Hong JS, Namkung H, Ahn KH, Lee SJ, Kim C, Polymer, 47(11), 3967 (2006)
  •  
  • 8. Grant TS, Howe DV, US patent 4,740,552 (1988).
  •  
  • 9. Campbell JR, Hobbs SY, Shea TJ, Watkins VH, Polym. Eng. Sci., 30, 1056 (1990)
  •  
  • 10. Cao Y, Zhang J, Feng J, Wu P, ACS Nano, 5, 5920 (2011)
  •  
  • 11. http://www.matweb.com.
  •  
  • 12. Fenouillot F, Cassagnau P, Majeste JC, Polymer, 50(6), 1333 (2009)
  •  
  • 13. Wu S, J. Polym. Sci., Part C: Polym. Symp., 34, 19 (1971)
  •  
  • 14. Gudarzi MM, Sharif F, Soft Matter, 7, 3432 (2011)
  •  
  • 15. Holmes DR, Bunn CW, Smith DJ, J. Polym. Sci., 17, 159 (1955)
  •  
  • 16. Li HZ, Wu YJ, Sato H, Kong L, Zhang CF, Huang K, Tao DL, Chen J, Liu XX, Zhao Y, Xu YZ, Wu JG, Ozaki Y, Macromolecules, 42(4), 1175 (2009)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2017; 41(5): 804-810

    Published online Sep 25, 2017

  • 10.7317/pk.2017.41.5.804
  • Received on Feb 28, 2017
  • Accepted on Apr 14, 2017