Article
  • Preparation, the Chain-extending Reaction Kinetics and Thermal Degradation of Poly(D-lactide) by Reactive Extrusion Process
  • Song Z, Zhen W
  • 반응압출 공정에 의한 사슬연장 Poly(D-lactide)의 합성 및 반응 동역학과 열적 분해 거동
  • Song Z, Zhen W
Abstract
The chain-extended poly(D-lactide) (PDLA) was prepared from D-lactide under optimum polymerization conditions of 1 wt% stannous octoate, at 170 °C, 10 rpm for 15 min or 10 min with the addition of chain extender (4,4'- diphenylmethane diisocyanate (MDI), hexamethylene diisocyanate (HDI)) by reactive extrusion process. The molecular weight of PDLA-MDI and PDLA-HDI was 45376 and 47238 g/mol, respectively, which had been significantly improved compared with PDLA (Mw=20730 g/mol). Furthermore, differential scanning calorimetry (DSC) results showed that the crystallinity of PDLA-MDI and PDLA-HDI was increased by 66.04 and 78.60%, respectively, compared with PDLA. Moreover, the rheological results and thermal decomposition kinetics results showed that the MDI and HDI had restricted the mobility of PDLA chains and enhanced the apparent activation energy (Ea) of thermal degradation of PDLA.

Keywords: poly(D-lactide); reactive extrusion process; chain-extending; kinetics

References
  • 1. Deng X, Hao J, Wang C, Biomaterials, 21, 22 (2001)
  •  
  • 2. Martina M, Hutmacher DW, Polym. Int., 2, 56 (2007)
  •  
  • 3. Jang JE, Kim HY, Song JE, Lee D, Kwon SY, Chung JW, Khang G, Polym. Korea, 37(6), 669 (2013)
  •  
  • 4. Xi X, Zhen W, Bian S, Wang W, Polym. Korea, 39(4), 601 (2015)
  •  
  • 5. Zhen WJ, Sun JL, Polym. Korea, 38, 299 (2013)
  •  
  • 6. Jang WY, Hong KH, Cho BH, Jang SH, Lee SI, Kim BS, Shin BY, Polym. Korea, 32(2), 116 (2008)
  •  
  • 7. Okihara T, Tsuji M, Kawaguchi A, J. Macromol. Sci.-Phys., B30, 119 (1991)
  •  
  • 8. Yamane H, Sasai K, Polymer, 8, 44 (2003)
  •  
  • 9. Wei XF, Bao RY, Cao ZQ, Macromolecules, 4, 47 (2014)
  •  
  • 10. Li H, Huneault MA, Polymer, 23, 6855 (2007)
  •  
  • 11. Cheng J, Sun JQ, Wu K, Yun XL, J. Chem. Eng., 27, 5 (2006)
  •  
  • 12. Liu C, Jia Y, He A, Int. Polym. Process., 2013, 1 (2013)
  •  
  • 13. Woo SI, Kim BO, Jun HS, Chang HN, Polym. Bull., 35(4), 415 (1995)
  •  
  • 14. Zhen WJ, Li J, Xu Y, Polym. Compos., 35, 1023 (2014)
  •  
  • 15. Lee SH, Kim D, Kim JH, Lee DH, Sim SJ, Nam JD, Kye H, Lee Y, Polym. Korea, 28(6), 519 (2004)
  •  
  • 16. Hyun ME, Kim SC, Polym. Eng. Sci., 28, 743 (1988)
  •  
  • 17. Espartero JL, Rashkov I, Li SM, Manolova N, Vert M, Macromolecules, 29(10), 3535 (1996)
  •  
  • 18. Kasuga T, Ota Y, Nogami M, Abe Y, Biomaterials, 1, 19 (2000)
  •  
  • 19. Jandas PJ, Mohanty S, Nayak SK, J. Clean Prod., 52, 392 (2013)
  •  
  • 20. Yoon CS, Ji DS, Polym. Korea, 33(6), 581 (2009)
  •  
  • 21. Li BH, Yang MC, Polym. Adv. Technol., 17, 439 (2006)
  •  
  • 22. Gu SY, Yang M, Yu T, Ren T, Ren J, Polym. Int., 7, 982 (2008)
  •  
  • 23. Battegazzore D, Bocchini S, Frache A, Express Polym. Lett., 5, 849 (2011)
  •  
  • 24. Garlotta DJ, Polym. Environ., 9, 63 (2001)
  •  
  • 25. Jiang L, Zhang JW, Wolcott MP, Polymer, 48(26), 7632 (2007)
  •  
  • 26. Liu Y, Li SC, Liu H, Polym. -Plast. Technol. Eng., 52, 841 (2013)
  •  
  • 27. Kissinger HE, Anal. Chem., 29, 1702 (1957)
  •  
  • 28. Ozawa T, J. Thermal Anal., 2, 301 (1970)
  •  
  • 29. Chrissafis K, Thermochim. Acta, 1, 511 (2010)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2017; 41(6): 902-914

    Published online Nov 25, 2017

  • 10.7317/pk.2017.41.6.902
  • Received on Feb 20, 2017
  • Accepted on Jun 8, 2017