Article
  • Fabrication of Asymmetric Porous Hydrophilic Nanofiber Mat Using a Co-solvent Post-treatment Technology
  • Park CH, Bae HR, Lee JH, Kwak SJ
  • 공용매 후처리 기술을 이용한 비대칭형 다공성 친수성 나노섬유체 제조
  • 박철호, 배하림, 이종휘, 곽성조
Abstract
Nanofiber has been widely used for a variety of applications due to high mechanical strength as well as high porosity. For improvement of performance of each application, facile and cost-effect technologies have been developed to tune the structure and surface of nanofibers. In this study, asymmetric nanofiber mats were fabricated using a co-solvent post-treatment technology. First, polyethersulfone solutions of low concentrations were electrosprayed to fabricate particles, and then electrospun nanofibers were consequently deposited onto them. Using a co-solvent post-treatment technology, asymmetric porous nanofiber mats were simply fabricated by enhancing the adhesion among all the interconnection points among fibers as well as particles. Especially, when Pluronic F127 was dissolved in the co-solvent solution, it was facile fabricating asymmetric porous nanofiber mats with hydrophilic surface modification.

나노섬유는 높은 기계적 강도와 기공도의 특성을 바탕으로 다양한 응용분야에 사용되고 있다. 각각 적용분야에 따른 성능향상을 위한 다양한 나노섬유 구조 및 표면 변화 기술들이 동시에 개발되고 있다. 본 연구에서는 공용매 후처리 기술을 이용하여 비대칭형 나노섬유체를 제작하였다. 먼저 저농도의 폴리이써설폰 고분자 용액을 사용하여 전기분무를 통해 입자를 형성한 후, 그 위에 전기방사를 통해 나노섬유를 적층시켰다. 이후 공용매 후처리 기술을 적용하여 입자와 나노섬유간에 결합력을 형성시켜 비대칭형 다공성 나노섬유 구조체를 제작하였다.특히, 이 기술로 플루로닉 F127을 공용매에 용해시켜 후처리할 경우, 나노섬유 구조체의 표면을 간단히 친수화할 수 있었다.

Keywords: co-solvent post-treatment; asymmetric porous nanofiber mats; electrospinning; electrospraying; polyethersulfone

References
  • 1. Le NL, Nunes SP, Sustainable Materials and Technologies, 7, 1 (2016)
  •  
  • 2. Lively RP, Sholl DS, Nat. Mater., 16(3), 276 (2017)
  •  
  • 3. Wang X, Hsiao BS, Curr. Opin. Chem. Eng., 12, 62 (2016)
  •  
  • 4. Mirjalili M, Zohoori S, J. Nanostruct. Chem., 6, 207 (2016)
  •  
  • 5. Park CH, Bae H, Kwak SJ, Jang MS, Lee JH, Lee J, Macromol. Res., 24(4), 314 (2016)
  •  
  • 6. Yoon K, Hsiao BS, Chu B, Polymer, 50(13), 2893 (2009)
  •  
  • 7. Kaur S, Barhate R, Sundarrajan S, Matsuura T, Ramakrishna S, Desalination, 279(1-3), 201 (2011)
  •  
  • 8. Huang LW, Manickam SS, McCutcheon JR, J. Membr. Sci., 436(-), 213 (2013)
  •  
  • 9. Kim JI, Hwang TI, Aguilar LE, Park CH, Kim CS, Sci. Rep., 6, 23761 (2016)
  •  
  • 10. Park CH, Lee J, J. Appl. Polym. Sci., 114(1), 430 (2009)
  •  
  • 11. Lafreniere LY, Talbot FDF, Matsuura T, Sourirajan S, Ind. Eng. Chem. Res., 26, 2385 (1987)
  •  
  • 12. Chakrabarty B, Ghoshal AK, Purkait MK, J. Membr. Sci., 309(1-2), 209 (2008)
  •  
  • 13. Yan D, Jones J, Yuan XY, Xu XH, Sheng J, Lee JCM, Ma GQ, Yu QSY, J. Biomed. Mater. Res., 101, 963 (2013)
  •  
  • 14. Ma Z, Kotaki M, Yong T, He W, Ramakrishna S, Biomaterials, 26, 2527 (2005)
  •  
  • 15. Zhao W, Su YL, Li C, Shi Q, Ning X, Jiang ZY, J. Membr. Sci., 318(1-2), 405 (2008)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2017; 41(6): 1041-1045

    Published online Nov 25, 2017

  • 10.7317/pk.2017.41.6.1041
  • Received on Jun 7, 2017
  • Accepted on Jul 23, 2017