Article
  • The Phase Behavior of Poly(ε-caprolactone) and Chlorinated Polyethylenes Blends. 1. Application of the Modified Guggenheim Quasi-Chemical(MGQ) Model
  • Lee MS, Lee HS, Jo WH
  • Poly(ε-caprolactone)과 Chlorinated Polyethylene 블렌드의 상거동에 관한 연구. 1. MGQ 모델에 의한 해석
  • 이무성, 이호상, 조원호
Abstract
The miscibility of poly(ε-caprolactone) (PCL) and chlorinated polyethylenes( CPEs) was studied using the MGQ model. This model predicts that the critical chlorine content in CPEs for the mixture to be miscible is near 30 wt.% . The effect of the degree of chlorination on miscibility is interpreted in terms of the segmental interaction parameters Bij estimated from the binary interaction(BI) model. It was found that intermolecular interactions between CHCI units in CPE and CH2COO units PCL are attractive and favorable for mixing of these blends. The intermolecular repulsions between the units in each polymer are also important for miscibility and thus contribute to the broadening of the miscibility boundary.

최근에 소개된 MGQ 모델을 이용하여 poly(ε-caprolactone)(PCL)와 chlorinated polyethylene(CPE) 블렌드의 상용성을 해결하였다. PCL과 상용성을 갖기위한 CPE의 최소한의 이론적인 염소함량은 약 30wt.% 정도였고 이 값는 이미 알려진 실험걸과와 잘 일치하였다. Chlorination정도가 블렌드의 상용성에 미치는 효과는 Binary Interaction(BI) 모델을 이용하여 해석하였다. CPE의 CHCl 단위와 PCL의 CH2COO 단위 사이에는 분자간 상호작용이 존재하며 이러한 상호작용이 블렌드의 상용성에 크게 영향을 미치고 또한 각 고분자를 구성하는 구조단위 사이에 존재하는 상호반발력 역시 상용성 영역의 확대에 기여하는 것으로 해석되었다

References
  • 1. Olabisi O, Macromolecules, 8, 316 (1975)
  •  
  • 2. Robeson LM, Hale WF, Merriam CN, Macromolecules, 14, 1644 (1981)
  •  
  • 3. Moskala EJ, Howe SE, Painter PC, Coleman MM, Macromolecules, 17, 1671 (1984)
  •  
  • 4. Smith P, Eisenberg A, J. Polym. Sci. C: Polym. Lett., 21, 223 (1983)
  •  
  • 5. Zhou ZL, Eisenberg A, J. Polym. Sci. B: Polym. Phys., 21, 595 (1983)
  •  
  • 6. Rutkowska M, Eisenberg A, Macromolecules, 17, 1335 (1984)
  •  
  • 7. Hara H, Eisenberg A, Macromolecules, 17, 1335 (1984)
  •  
  • 8. Eisenberg A, Hara M, Polym. Eng. Sci., 24, 1306 (1984)
  •  
  • 9. Kambour RP, Bendler JT, Bopp RC, Macromolecules, 16, 753 (1983)
  •  
  • 10. tenBrinke G, Karasz FE, MacKnight WJ, Macromolecules, 16, 1827 (1983)
  •  
  • 11. Paul DR, Barlow JW, Polymer, 25, 487 (1984)
  •  
  • 12. Shiomi T, Karasz FE, MacKnight WJ, Macromolecules, 19, 2274 (1986)
  •  
  • 13. Olabisi O, Robeson LM, Shaw MTPolymer-Polymer Miscibility, Academic Press, New York (1979)
  •  
  • 14. Harris JE, Paul DR, Barlow JW, Polym. Eng. Sci., 23, 676 (1983)
  •  
  • 15. Walsh DJ, Rostami S, Adv. Polym. Sci., 70, 119 (1985)
  •  
  • 16. Kim JH, Barlow JW, Paul DR, J. Polym. Sci. B: Polym. Phys., 27, 223 (1989)
  •  
  • 17. Lai CH, Paul DR, Barlow JW, Macromolecules, 21, 2492 (1988)
  •  
  • 18. Lai CH, Paul DR, Barlow JW, Macromolecules, 22, 374 (1989)
  •  
  • 19. Belorgey G, Prud'homme RE, J. Polym. Sci. B: Polym. Phys., 20, 191 (1982)
  •  
  • 20. Defieuw G, Groeninckx G, Reynaers H, Polymer, 30, 595 (1989)
  •  
  • 21. Zhikuan C, Lianghe S, Sheppard RN, Polymer, 25, 369 (1984)
  •  
  • 22. van Krevelen DWProperties of Polymers, Elsevier Scientific, Amsterdam (1976)
  •  
  • 23. Bondi A, J. Phys. Chem., 68, 441 (1964)
  •  
  • 24. Woo EM, Barlow JW, Paul DR, Polymer, 26, 763 (1985)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 1990; 14(5): 552-557

    Published online Oct 25, 1990