Effect of Molecular Weight and Temperature on Interpolymer Complexation between Poly(acrylic acid) and Poly(ethylene oxide) in Water

Seong-Won Kang, Hee-Jun An, Chun-Hag Jang, Ki-Won Song*, and Jang-Oo Lee†
Department of Polym. Sci. & Eng., Pusan Nat'l Univ., Pusan 609-735, Korea
*Department of Textile Eng., Pusan Nat'l Univ., Pusan 609-735, Korea
(Received September 19, 1996)

ABSTRACT: In order to investigate the effects of molecular weight and temperature on the interpolymer complexation through hydrogen bonding, a study was made on the complex system of poly(acrylic acid) (PAA) and poly(ethylene oxide) (PEO) for various molecular weights under different solvent (water) temperatures using the Ubbelohde viscometer and pH-meter. The complexation behaviour, including the repeating unit mole ratio at the most optimum complexation, seems to be largely affected by the number and/or chain-length of the component polymers. In addition, the temperature of the medium was found to influence not only the complexing ability but also the stoichiometric ratio. These results could be explained in terms of “cooperative” and hydrophobic interactions included.

Keywords: complexation, hydrogen bonding, "cooperative" and hydrophobic interactions.
외의 수소결합을 통하여 고분자차계가 형성되는데 이 과정은 두 성분 고분자 분자량이 어떤 (임계) 값 이상이 되는 경우에는 더욱 유리해지는 소위 “협동적 기구” (cooperative mechanism) 와의 관계가 보고 되어 있다.4,5 더욱이 용매가 물인 경우에는 성분 고분자 조합으로 배합된 (-CH₂-)에 의한 소수성 상호작용 (hydrophobic interaction) 은 수소결합 차체의 안정화에 큰 기여를 함이 밝혀져 있다.5,6

일반적으로 두 고분자간의 촉쇄형성과정은 온도, 농도, 조성, 고분자 구조 및 복합상, 용매의 종류, 환경, pH 등 여러 인자의 영향을 받는데,7,8 이전의 연구에서는9 물에 있을 때, 용액, 용기와의 첨가가 PAA/PEO계의 촉쇄형성과정에 미치는 영향을 전반 차계 및 정도 등을 사용하여 조사하였다.

본 연구에서는 PAA와 PEO간의 수소결합을 통한 고분자체제형성과정에 있어서 각 성분 고분자의 분자량효과 (즉 협동적응)과 온도의 영향을 더욱 체계적으로 조사하기 위하여 PAA의 분자량은 5000에서 45000까지, PEO의 분자량은 100000부터 900000 까지 바꾸고, 온도는 20℃부터 50℃까지 바꾸어 모세관 정도계와 전위차계를 이용하여 조사하였다.

설계

시료. 실험에 사용된 PAA와 PEO는 Aldrich사의 특급시약으로서 각각 분자량이 다른 4종류를 사용하였으며, 그 분자량에 대한 명세는 Table 1에 나타내었는데, 정밀로 제조된 농도 (M.W.) 뿐만 아니라 고무질 (ηsp)의 촉쇄과정과 Mark-Houwink식을 이용하여 구한 정도평균분자량 (Mn)도 참고로 함께 표시하였다.

용매는 물은 3차 중류수 (triplly distilled water)를 사용하였다.

측정. 촉쇄형성에 따른 고분자의 수학적 크기 (hydrodynamic dimension)의 상대적인 변화를 측정하기 위한 환원점도 (ηsp/C PAA: 여기서 ηsp는 비점 도, C PAA는 PAA의 농도)를 전보에서와 같이 Ubbelohde 모세관 정도계를 사용하여 25±0.05℃에서 농도가 0.0667g/dL의 PAA용액에 요구하는 반복단위 물질 (repeating unit mole ratio)가 되도록 첨가된 PEO를 가진 물은 고분자체제용액의

<table>
<thead>
<tr>
<th>Sample</th>
<th>M.W.</th>
<th>ηsp/C PAA: C PAA = 0.0667 g/dL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAA</td>
<td>5000</td>
<td>3760</td>
</tr>
<tr>
<td></td>
<td>9000</td>
<td>8700</td>
</tr>
<tr>
<td></td>
<td>24000</td>
<td>227000</td>
</tr>
<tr>
<td></td>
<td>45000</td>
<td>420000</td>
</tr>
<tr>
<td>PEO</td>
<td>10000</td>
<td>86000</td>
</tr>
<tr>
<td></td>
<td>30000</td>
<td>290000</td>
</tr>
<tr>
<td></td>
<td>60000</td>
<td>590000</td>
</tr>
<tr>
<td></td>
<td>90000</td>
<td>770000</td>
</tr>
</tbody>
</table>

* Date as supplied by Aldrich Co.

PAA(ηsp) = 42.2×10⁻⁹ Mₙ⁽⁻²⁵ (25 ℃, 2M NaOH aqueous solution).

PEO(ηsp) = 157×10⁻³ Mₙ⁹⁻²⁵ (25 ℃, water).

유동시간을 측정하여 구하였다.

한편 pH측정을 Mettler 시의 632 pH-meter를 사용하여 자체 제작한 향분조 속에서 각 온도마다 10분간의 간격을 두어 점수측정하여 측정하였으며, 측정오차는 ±0.05 ℃이었다.

결과 및 고찰

분자량 변화에 따른 촉쇄형성의 경우, PAA와 PEO는 물의 농도의 고분자 수용액 중에서 수소결합을 통하여 통상 1:1의 반복단위 물질로 촉쇄를 형성함을 알려져 있으나, 전보에서12 발현 비와 값이 두 성분간의 최대촉쇄형성점은 반드시 화합량 의 고정되어 있는 것이 아니라 물에 염료로, 용기, 용기의 첨가여부와 용매의 특성에 달려지게 변할 수 있다.13,14 thereby is the case의 분류에서는 관심의 대상이 되고 있는 분자량이 큰 두 성분 고분자간의 촉쇄형성에는 반복단위의 수가 작은 것이 많이 있는 경우보다 큰 것이 작게 있는 것이 더 갑작히 촉쇄형성에 유리하다는 소위 “zipper model”로 설명되어지는 “협동적 상호작용”의 기여함을 알리고자 한다. 이 용량 촉쇄형성과정 중 특히 최대촉쇄형성점에 대한 정밀고분자의 순서가 (분자량) 또는 분자의 개수의 영향을 조사한 결과로 25 ℃ 물 속에서 여러 종류 분자량의 PAA와 PEO간의 조성 (반복단위 물질)을 달리하여 얻어진 물은 촉쇄 혼합물 수용액의 환원점도 (ηsp/C PAA: C PAA = 0.0667 g/dL)를 측정하여 Fig. 1에 나타내었다. 전보에서 밝힌 바와

Polymer (Korea) Vol. 21, No. 3, May 1997

Page 500
수용액 중에서 Poly(acrylic acid)와 Poly(ethylene oxide)의 작용성을 대한 분자량과 온도의 영향

Figure 1. Effect of molecular weight of the component polymers on the relationship between reduced viscosity ($\eta_\text{rp}/C_{\text{PAA}}$) for dilute PAA-PEO mixture solutions ($C_{\text{PAA}}=0.0667$ g/dL) in water at 25 °C and repeating unit mole ratio, [PEO]/[PAA]. M.W. of PAA: (a) 5000, (b) 90000, (c) 240000, (d) 450000. M.W. of PEO: (●) 100000, (■) 300000, (▲) 600000, (▼) 900000.
같이 PAA와 PEO가 수용액 중에서 수소결합을 통해 하체를 형성할 경우에는, 일부 분자에 존재하는 전하를 서로 감소시켜 비극성의 소수성 물질이 되어 주변의 물에 의해 옮겨져다니고 낳은 수력학적 크기를 갖게 되어 최대착색형성점에서의 음력의 점도 또한 최소가 될 것이다. 그런데 $M_{\text{PAA}}=5000$인 Fig. 1 (a)의 경우에는 사용된 모든 PEO의 분자량에 대하여 혼합물의 조성 (반복단위 물질)에 따른 환원점도와 극소점이 보이지 않고, 오히려 PAA (초기농도
= 0.0667 g/dL)에 PEO가 가면서 수록 점도가 증가하는데 이는 PAA의 수력학적 크기가 넓어 봄 PEO의 크기에 비해 적절 작아 점도에 대한 PAA의 영향이 거의 없기 때문에 생각된다. 한편으로는, 두 성분 고분자간의 착색형성은 공정체의 역할로 그 수용체가 형성될 수 있다. 그림, Fig. 1의 (b) 및 (c)에서 보듯이 PAA의 분자량은 9만 이상으로 계속 증가하면서 사용된 PEO의 분자량에 따라 극소점의 모양 차이는 있으나 모든 경우에는 고분자하계가 형성될 수 있다. 그러나, Fig. 1의 (b)~(d)에서 볼 수 있듯이 최대착
색형성점에서의 반복단위 물질의 값은 상상의 1.1 이나, 반응량 참가하는 성분 고분자의 분자량에 따라 그 비가 변하는 것을 알 수 있는데, 이는 PEO/ PAA의 착색형성과정은 반복단위간의 화학적으로 고정된 약물비를 갖는 것이 아니라 착색중에 관여 하는 분자의 수와 사슬의 길이에도 영향을 받는다는 중요한 사실을 의미한다. 특히, 그림 (b), (c)에서는 PEO의 분자량이 증가함수록 최대착색형성점이 낮은 반복단위 물질로 이동하는 것을 무리하게 볼 수도 있지만 이것은 같은 반복단위 물질에서도 착색을 형성하는 PEO의 분자량이 커진다는 것은 영향에 PEO의 수력학적 크기를 커지고 분자교차는 줄어든다는 것을 의미하는 것으로 분자량이 커질수록 최대착색형성점까지 소모되는 PEO분자의 개수가 줄어드는 것을 보여

\[
\text{Figure 2. Effect of temperature on the relationship between reduced viscosity} \\
\text{($\eta_{sp}/[\text{PAA}])$ of dilute PAA-PEO mixture solutions} \\
\text{([PAA]=0.0667 g/dL] in water and repeating unit mole ratio,} \\
\text{[PEO]/[PAA]. $M_{\text{PAA}}=240000$ and $M_{\text{PEO}}=300000$.}
\]

주는 결과이다. 이것은 또한 분자체의 감가기 갈수록 협동현상의 영향으로 해석가가 착색형성을 하기 위해 유리하기 때문에 생각된다. 한편 그림 (d)에서는 그림 (b), (c)와는 달리 최대착색형성점이 1 이상의 높은 반복단위 물질에서 나타나는 것, PAA의 분자량이 (b), (c)에 비해 "polybase"인 PEO보다 높은 수력학적 크기를 가지므로 이는 최대착색형성점까지 소호되는 PEO의 양이 많기 때문이다. 그러나, 급격한 환원점도의 감소를 보임으로 인하여 구분이 될 것을 없었으나 PEO의 분자량 증가에 따른 낮은 반복단위물질의 이동도 관찰되었다.

온도 변화에 따른 착색형성 거동, 수용액 중에서 PAA와 PEO간의 수소결합을 통한 착색형성에 있어서 "medium"의 온도 영향을 조사하기 위하여 최대착색형성점에서의 반복단위 물질이 정함관인 [PEO]/

[PAAl=1에 가까운 분자량 30만 PEO와 분자량이 24만인 PAA (Fig. 1의 (c) 참조)를 택하여 두의 온도를 20 ℃부터 50 ℃까지 10 ℃간격으로 바꾸어
수용액 중에서 Poly(acrylic acid)와 Poly(ethylene oxide)의 칩제형성에 대한 분자량과 온도의 영향

여러 반복단위 물비에서의 몸은 칩제용액 \(C_{\text{PAA}} = 0.0667 \text{ g/dL} \)의 환원점도 \(\eta_{sp}/C_{\text{PAA}} \)를 측정하여 Fig. 2에 나타내었다.

그림에서 보는 바와 같이 온도가 증가할수록 헌합용액의 환원점도가 최소가 되는 최대착제형성점에서의 반복단위 물비 \((\text{PEO}/[\text{PAA}])\)의 값이 약간 높은 좌으로 이동하는 경향을 보였다. 이는 Fig. 3에 나타낸 바와 같이, 높은 온도의 경우에는 PAA추체에 있는 카르복실기가 혼합되어 PEO와 수소결합할 수 있는 전체 활성점(미히리 -COOH기)의 수는 감소하고 PAA의 주체를 따라 많은 부분으로 나누어지게 될 것이다.\(^{6,12,13}\) 그 결과, 앞에 언급한 고분자체재에 작용하는 혼합성의 기여로 PAA 한 분자에 더욱 많은 수의 PEO 분자가 칩제형성에 필요한 길이의 각각 최대착제형성점에서의 반복단위 물비 값이 증가하게 된 것으로 추측할 수 있다. 그리고 높은 온도에서는 최대착제형성점의 점수가 낮은 것은 PAA추체의 카르복실기의 온도증가에 따른 해도 증가에 의한 -COO\\(^-\)간의 반반적양이 인한 수학적 크기의 증가효과보다 온도에 의한 칩제용액의 점도감

소효과가 더 큰 것과 뒤에서 언급하는 바와 같이 온도증가에 따른 PEO의 소수성 결합효과의 증가로부터 보다 "compact"한 칩제형성의 결과로 생각되어 질 수 있다.\(^{12}\)

한편, 수용액 중에서 PEO와 PAA의 칩제형성에 따른 medium의 초기 pH에 대한 온도의 영향을 조사하기 위하여 각 온도별로 분자량 24만을 가진 PAA의 몸은 수용액 \(C_{\text{PAA}} = 0.0667 \text{ g/dL} \)에 분자량 30만의 PEO의 첨가에 따른 용액의 pH변화를 반복단위 물비의 함수로 Fig. 4에 나타내었다. 그림에서 보는 바와 같이, 모든 온도에 대하여 산성계 고분자인 PAA 수용액에 염기성계 고분자인 PEO를 첨가함에 따라 pH값이 증가함을 보이다. 어떤 첨에서 기울기가 변하게 되는데 이 점이 최대 칩제형성점에 해당한다. 이는 전술한 바와 같이 수용액 중에서의 PAA와 PEO의 칩제형성은 주로 PAA의 추체에 있는 미하리 카르복실기에의 -H와 PEO추체에 있는 -O-의 수소결합에 의한 것인데, 원래 PAA는 약간해결이므로 몸에 일부 해리하여 약한 산성을 띄게 되나

플리머 제21권 제3호 1997년 5월 503
Figure 5. Temperature dependence of the degree of linkage (θ) and complex stability constant (K) for 1:1 PAA/PEO complex solutions ($C_{\text{PAA}}=0.0667 \text{ g/dL}$) in water. $M_{\text{PAA}}=240000$ and $M_{\text{PEO}}=300000$.

Figure 6. Dependence of standard Gibbs free energy change upon complexation (ΔG°) on temperature for 1:1 PAA/PEO complex solutions ($C_{\text{PAA}}=0.0667 \text{ g/dL}$) in water. $M_{\text{PAA}}=240000$ and $M_{\text{PEO}}=300000$.

\[K = \frac{[\text{complex}]}{[\text{PAA}][\text{PEO}]} = \frac{C_c \theta}{C_o^2 (1 - \theta)^2} \] \hspace{1cm} (2)

\[\Delta G^\circ = -RT \ln K \] \hspace{1cm} (3)

\[d \ln K/d(\frac{1}{T}) = -\frac{\Delta H^\circ}{R} \] \hspace{1cm} (4)

한 편에서 C 및 C_o는 PEO가 존재할 때와 없을 때의 "free" COOH의 농도이고, $[\text{H}^+]$와 $[\text{H}^+]_o$는 PEO가 존재할 때와 없을 때의 수소이온의 농도이다. 그리고 ΔH°은 쌍해형성의 엔탈피의 변화이다. 이들 그림에서 보는 바와 같이, 온도가 증가함수록 θ 및 K 값이 더욱 커지고, $\Delta G^\circ (= -RT \ln K)$는 보다 큰 음의 값을 갖게 되는데 이는 수소결합을 통한 본 PAA/PEO 쌍해계가 온도가 증가함에 따라 더욱 자발적이고 안정된 고분자차체를 형성함을 나타낸다. 만약 이 계가 반복단위간의 수소결합만을 통하여 작
체를 형성한다면 원래 비교적 저온에서 효율적인 수순결합에 의한 ΔH^*는 음의 값을 가지므로 식 (4)에 의해서 $(dK/dT)<0$이 되어 온도가 증가할수록 작체형성한수 K값이 감소하게 되는데, Fig. 5 및 6에서 알 수 있듯이 실제는 반대의 결과이다. 이것은 이 작체형성 반응은 수순결합 외에 다른 2차 결합력인 ΔH^*가 양인 소수성 상호작용도 특히 고온에서 더욱 활발하게 작용하여 식 (4)에 의해 $(dK/dT)<0$이므로 수순결합의 영향력이 작용되는 온도 범위 내에서는 온도가 증가할수록 작체정화에너지 K값이 더욱 커지게 될 것으로 생각된다. 따라서 본 PAA/PEO 작체계는 수용액 중에서 수순결합만의 작체형성 을 통하여 작체를 형성할 뿐만 아니라 비교적인 소수성상호작용도 형성된 고분자작체의 안정화에 크게 기여함을 알 수 있다.

결론

수용액 내에서 수순결합을 통한 PAA/PEO 작체 형성 거동에 대한 성분 고분자의 분자량 및 온도의 영향을 점도 및 pH 측정을 통하여 얻어진 결과는 다음과 같다.

1. 주어진 분자량의 PEO에 대하여 PAA의 분자량이 5000과 같이 매우 낮을 경우에는 "협동성"의 결계로 작체형성이 어려웠으나, 90000 이상의 비교적 높은 분자량의 경우에는 [PEO]/[PAA]=1:1 반복단위 몰비 근방에서 두터운 작체형성이 관찰되었다.

2. 성분 고분자의 분자량에 따라 반복단위 몰비로 나타낸 최대작체형성이 1:1 전후로 변하는 것은 최대작체형성은 화학양론적으로만 변하는 것이 아니라 분자의 수와 사슬의 길이에도 영향을 받아야 함을 확인하였다.

3. PAA-PEO 작체계에서 용매의 온도상승은 PAA의 해리를 촉진시키고 아울러 PEO의 소수성 효과에 의해 더 많은 수의 PEO분자들 작체형성에 관여하는 작체형성결에서의 반복단위 몰비([PEO]/[PAA])가 동성의 1:1보다 높은 쪽으로 이동하였다.

참고문헌