새로운 지방족 디올/디카복실산계 생분해성 폴리에스테르 및 가수분해 특성

강태곤 · 한양규[†]

한양대학교 화학과, 한국과학기술원 기능성고분자신소재연구센타 (2005년 3월 22일 접수, 2005년 5월 9일 채택)

New Aliphatic Diol/Dicarboxylic Acid Based Biodegradable Polyesters and Their *in-vitro* Degradations

Tae-Gon Kang and Yang-Kyoo Han[†] Department of Chemistry, Hanyang University, Seoul 133-791, Korea Korea Center for Advanced Functional Polymers, KAIST, Daejeon 305-701, Korea (Received March 22, 2005; accepted May 9, 2005)

초록: 촉매인 stannous octoate 존재 하에서 글리콜리드를 이관능성 개시제인 1,4-butanediol, 1,6-hexanediol, 1,4-cyclohexanediol, 1,4-cyclohexanediol, 1,4-cyclohexanediol, 1,4-cyclohexanediol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol과 반응시켜 4가지 종류의 새로운 지방족 디올을 합성하였다. 이들 새로운 디올과 succinic acid, adipic acid, 혹은 suberic acid와 titanium(IV) isopropoxide 촉매하에서 170, 190, 또는 220 ℃에서 축합중합 시켜 분자구조가 규칙적으로 배열된 새로운 지방족 폴리에스테르와 무질서한 구조를 갖는 폴리에스테르를 각각 얻었다. 이들 지방족 폴리에스테르들의 유리전이온도(Tg)는 -40에서 30 ℃ 사이였다. 또한 170 ℃에서 제조된 분자구조 가 규칙적으로 배열된 폴리에스테르, 높은 온도에서 합성된 구조가 무질서한 폴리에스테르들보다 Tg가 5-10 ℃ 정도 높았다. 체외분해 실험 결과, 분자구조가 규칙적으로 배열된 폴리에스테르가 불규칙한 중합체보다 완충용액 속 에서 가수분해속도가 느렸다.

Abstract: Four kinds of new aliphatic diols were synthesized by the ring opening reaction of glycolide with 1,4-butanediol, 1,6-hexanediol, 1,4-cyclohexanediol, or 1,4-cyclohexanedimethanol, a difunctional initiator, in the presence of stannous octoate catalyst. The resulting diols were melt-polymerized with succinic acid, adipic acid, or suberic acid at 170, 190, or 220 °C to produce new sequentially ordered aliphatic polyesters and their corresponding polyesters with random structure. Their glass transition temperatures (T_g) ranged from -40 to 30 °C. The sequentially ordered polyesters prepared at 170 °C had higher T_g of 5 to 10 °C than the polyesters with random structure produced at higher temperature. From *in-vitro* degradation test, the sequentially ordered polyesters was slower in the rate of hydrolysis in a buffer solution than the polymers with random molecular structure.

Keywords: sequentially ordered aliphatic diol, biodegradable polyesters, transesterification, *in-vitro* degradation, degradation rate.

1. 서론

락티드(lactide), 글리콜리드(glycolide), 또는 *ɛ*카프로락톤(*ɛ*-caprolactone) 같은 환상락톤으로부터 합성된 지방족 폴리에스테르들은 독 성이 적고 생체분해성 및 생체적합성이 우수하기 때문에 수술용 봉 합사,¹² 약물조절용 수지,³⁴ 골절접합제 등과⁵⁶ 같은 의료용 생체분 해성 고분자로서 널리 응용되고 있다. 하지만 상업적으로 응용되기 위해서는 녹는점, 결정성, 용해도, 적절한 기계적 강도와 형태의 유 지, 생분해 속도 등의 물성들을 용도에 적합하게 개질해야만 한다.⁷⁸ 그 동안 생체분해성 및 생체적합성이 우수한 지방족 폴리에스테 르의 물성을 향상시키기 위하여 여러 가지 방법들이 연구되어 왔 다. 첫째, 서로 다른 물성을 가진 단일중합체들의 상호 보완을 위하 여 공중합체를 만든다. 즉 녹는점이 높고, 결정성이 크며, 용해도가 낮은 폴리락티드(PLA), 폴리글리콜리드(PGL)를 녹는점과 결정성이 낮고 유연하여 용해도가 좋은 폴리(*ɛ*-카프로락톤)(PCL)과 공중합시 켜 단점을 상호 보완한다.⁹ 둘째, 중합반응의 조건에 따라 상기한 공 중합체들의 조성과 분자량을 조절함으로써 용융온도(*T*_m), 유리전이 온도(*T*_g), 생분해 거동, 또는 기계적 강도 등을 개질한다.¹⁰ 셋째, 글 리세롤(glycerol), pentaerythritol과 같은 다관능성 개시제들을 이용하 여 스타형(stat-shaped) PGL, PLA 및 그들의 공중합체를 제조하여 왔 다.¹¹ 그 이유는 스타형 고분자들이 선형(linear-shaped) 고분자들에 비 하여 *T*_m, *T*_g 및 용융점도는 낮지만 열적안정성이 상대적으로 우수할 뿐 아니라 생분해 속도가 빠른 특성 때문이다.¹² 이외에, Okada 등 은 지방족 폴리에스테르의 화학적 미세구조가 중합체의 물성과 생 분해 특성에 미치는 영향을 조사하여 왔다.^{13,14}

하지만 지금까지 개발된 이들 생분해성 지방족 폴리에스테르 공 중합체들은 고분자 사슬 내의 분자 배열이 대분분 무질서한 구조 이다. 따라서 중합체의 구조와 물성 사이의 상관관계를 명확하게 조 사하는데 어려움이 있다.

본 연구에서는 이런 문제를 극복하기 위하여, 1,4-butanediol(BD), 1,6-hexanediol(HD), 1,4-cyclohexanediol(CHD), 또는 1,4-cyclohexanedimethanol(CHDM)과 같은 이관능성 개시제로 글리콜리드를 개환

[†]To whom correspondence should be addressed. E-mail: ykhan@hanyang.ac.kr

시켜 양 말단에 글리콜리드 구조가 도입된 분자구조가 규칙적으로 배열된 새로운 지방족 에스테르 디올 단량체를 합성하였다. 이러한 디올들을 succinic acid(SCA), adipic acid(APA), 그리고 suberic acid(SBA) 와 용매 없이 중합온도를 변화시키면서 축합반응을 일으켜 화학적 미세구조가 규칙적으로 배열된 중합체와 구조가 무질서한 고분자를 각각 제조하였다. 또한 이들 중합체들의 화학적 미세구조의 배열이 열적성질 및 가수분해 거동에 미치는 영향을 조사하였다.

2. 실험

2.1 재료

이관능성 개시제로 사용된 BD, HD, CHD, CHDM 등의 디올은 Aldrich사의 시약(99%)을 그대로 사용하였다. 글리콜리드도 IR 및 ¹H-NMR을 통해 구조를 확인한 후 그대로 사용하였다. 디카복실산 SCA, APA, SBA들은 Aldrich사의 시약(99%)을 승화 방법으로 정제하여 사 용하였다. 촉매로 사용된 stannous octoate(Sn-oct, 95%)는 Sigma사의 시약을, titanium(IV) isopropoxide(TIP, 99.9%)과 가수분해 실험에 사 용된 인산염 완충용액은 Aldrich사의 시약을 구입한대로 사용하였 다. 기타 시약은 1급 시약을 정제하지 않고 그대로 사용하였다.

2.2 구조분석

합성한 물질들의 구조는 FT-IR(Brucker IFS 48)과 FT-NMR(Varian-400)을 사용하여 분석하였다. 중합체의 고유점도는 Witeg사의 Cannon-Fenske형 점도계를 사용하여 25.0 ℃에서 클로로포름 용매 내에서 측정하였다. 합성된 단량체 및 중합체의 열적성질은 Rheometric Scientific Ltd.사의 DSC Plus(승온속도 5~10 ℃/min) 및 TGA 1000(승온속 도 10 ℃/min)을 사용하여 질소 분위기 하에서 측정하였다. 중합체 의 분자량 및 분자량분포는 THF 용매와 Styragel column을 사용하여 Shimazu LC-4A GPC로 측정하였다. 또한 중합체의 필름을 pH 7.0의 완충용액 속에서 가수분해한 후 필름표면의 분해상태를 Hitachi사의 S-2500C SEM으로 확인하였다.

2.3 새로운 지방족 에스테르계 디올의 합성

BD 5.20 g(57.7 mmol), GL 13.387 g(115.4 mmol), Sn-oct 0.093 g(0.23 mmol)을 100 mL 2-구 등근 플라스크에 넣은 후 플라스크를 100 ℃ 로 예열된 실리콘 기름 중탕에 넣고 질소 분위기 하에서 교반하면 서 5시간 반응시켰다. 반응 후 클로로포름 100 mL를 반응물에 넣고 교반하여 녹인 다음 용해되지 않은 흰색 침전물을 여과하여 제거 하였다. 여과된 클로로포름 용액을 회전식 증발기로 클로로포름 용 매를 제거한 후 40 ℃의 진공오븐에서 24시간 이상 건조하여 새로 운 지방족 에스테르계 디올(BD/GL diol: BGD)을 합성하였다.

이외에, 개시제로서 BD 대신에 HD, CHD를 사용한 경우도 위와 동일한 조건으로 반응시켜 새로운 디올들로서 HD/GL diol(HGD)과 CHD/GL diol(CHGD)을 제조하였다.

다만 개시제로서 CHDM을 사용한 경우에는 반응 후 클로로포름 100 mL를 반응물에 넣고 교반하여 녹인 다음 용해되지 않은 흰색 침전물을 여과하여 제거한 후 여과된 클로로포름 용액을 증류수(100 mL×7회)로 세척하여 반응하지 않고 남아있는 CHDM을 제거하였 다. 그후 클로로포름 용액에 약 3 g의 무수 황산 마그네슘을 첨가 하여 2시간 동안 교반하여 용액 내에 남아있는 수분을 제거하였다. 여과된 용액을 회전식 증발기로 클로로포름 용매를 제거한 후 40 ℃ 의 진공오븐에서 24시간 이상 건조하여 CHDM/GL diol(CHMGD)을 제조하였다. 합성된 4종류의 새로운 디올 화합물의 구조는 IR과 ¹H-NMR 스펙 트럼으로부터 확인하였으며, 그들의 특성 피크들은 아래와 같다.

2.3.1 BGD

IR(NaCl plate, Figure 1(a): 1105(C-O), 1197(O=C-O), 1429(H-C-H), 1747(C=O), 2960(C-H), 3469 cm⁻¹(O-H); ¹H-NMR(CDCl₃Figure 1(b): δ 1.75(4H, m, C-CH₂C), 3.3(2H, broad s, OH), 4.2(4H, t, COO-CH₂C), 4.3 (4H, s, COO-CH₂OH), 4.75(H_a, d, COO-CH₂COO), 4.85 ppm(H_a', d, COO-CH₂COO).

2.3.2 HGD

IR(NaCl plate): 1100(C-O), 1179(O=C-O), 1426(H-C-H), 1750(C=O), 2940(C-H), 3468 cm⁻¹(O-H); ¹H-NMR(CDCl₃): δ 1.4(4H, m, C-C-CH₂-C-C), 1.7(4H, m, COO-C-CH₂-C-COO), 3,2(2H, broad s, OH), 4.2(4H, t, COO-CH₂-C), 4.3(4H, s, COO-CH₂-OH), 4.75(H_a, d, COO-CH₂-COO), 4.85 ppm(H_a, d, COO-CH₂-COO).

2.3.3 CHGD

$$\label{eq:rescaled} \begin{split} & \text{IR}(\text{NaCl plate}): \ 1103(\text{C-O}), \ 1184(\text{O}=\text{C-O}), \ 1428(\text{H-C-H}), \ 1748(\text{C}=\text{O}), \\ & 2950(\text{alC-H}), \ 3467 \ \text{cm}^{-1}(\text{O-H}); \ ^1\text{H-NMR}(\text{CDCl}_3): \ \delta \ 2.0\text{-}1.4(8\text{H}, \ \text{m}, \ \text{CH}_2 \ \text{in} \\ & \text{cyclohexane} \), \ 3.0(2\text{H}, \ \text{broad} \ \text{s}, \ \text{OH}), \ 4.15(2\text{H}, \ \text{d}, \ \text{COO-CH}_2\text{-OH}), \ 4.30(2\text{H}, \\ & \text{d}, \ \text{COO-CH}_2\text{-OH}), \ 4.75(\text{H}_a, \ \text{d}, \ \text{COO-CH}_2\text{-COO}), \ 4.85(\text{H}_a, \ \text{d}, \ \text{COO-CH}_2\text{-} \\ & \text{COO}), \ 4.95 \ \text{ppm}(2\text{H}, \ \text{s}, \ \text{COO-CH}-, \ \text{methyne group in cyclohexane}). \end{split}$$

2.3.4 CHMGD

$$\begin{split} & \text{IR}(\text{NaCl plate}): 1104(\text{C-O}), 1190(\text{O}=\text{C-O}), 1427 \ (\text{H-C-H}), 1749(\text{C}=\text{O}), \\ & 2955(\text{alC-H}), 3465 \ \text{cm}^{-1}(\text{O-H}); \ ^1\text{H-NMR}(\text{CDCl}_3): \ \delta \ 2.0\text{-}1.4(10\text{H}, \text{ m}, \text{CH}_2 \text{ in cyclohexane}), \ 3.1(2\text{H}, \text{ broad } \text{s}, \text{OH}), \ 4.0(\text{H}_a, \text{ d}, \text{COO-CH}_2\text{-cyclohexyl}), \\ & 4.1(\text{H}_a, \text{ d}, \text{CH}_2\text{-cyclohexyl}), \ 4.15(\text{H}_b, \text{ d}, \text{COO-CH}_2\text{-OH}), \ 4.30(\text{H}_b, \text{ d}, \text{COO-CH}_2\text{-OO}), \\ & \text{CH}_2\text{-OH}), \ 4.75(\text{H}_c, \text{ s}, \text{COO-CH}_2\text{-COO}), \ 4.85 \ \text{ppm}(\text{H}_c, \text{ s}, \text{COO-CH}_2\text{-COO}). \end{split}$$

2.4 새로운 지방족 폴리에스테르의 합성

1-구 등근 플라스크에 합성한 BGD를 3.09 g(9.59 mmol), SCA를 1.10 g(9.30 mmol), 촉매로서 titanium(IV) isopropoxide 11.0 mg(0.039 mmol)을 넣었다. 170 ℃로 예열된 실리콘기름 중탕에 1-구 등근 플 라스크를 완전히 담그고 고체 시료가 녹은 것을 확인한 후, 진공펌 프로 단계적으로 감압(상압, 6시간 → 5 tor, 6시간 → 3 tor, 12시간 → 2 tor, 6시간 → 1 tor, 12시간 → 0.5 tor, 6시간 → 0.1 tor, 24시간)하여 교반하면서 72시간 동안 용융중합반응을 시켰다. 중합 후 진한 갈 색으로 얻어진 중합체에 클로로포름을 첨가하여 중합체를 완전히 녹인 후 여과한 다음, 중합용액을 50 mL 정도로 농축한 뒤 500 mL 의 메탄올로 중합체를 추출하였다. 얻어진 중합체를 메탄올(50 mL ×5회 이상)로 세척한 뒤 50 ℃의 진공오븐에서 24시간 동안 완전 히 건조하여 새로운 지방족 폴리에스테르 중합체를 75%의 중합 전 환율로 얻었다. 한편, SCA 대신에 APA와 SBA를 사용한 경우도 위 와 동일한 방법으로 중합반응을 수행하였다.

이외에, 중합온도를 170, 190, 또는 220 ℃로 변화시키면서 중합시 켜 분자구조가 규칙적으로 배열된 폴리에스테르와 무질서하게 배 열된 폴리에스테르를 제조하였다. 또한 BGD 대신에 HGD, CHGD, 혹은 CHMGD를 사용한 경우도 각각 위와 동일한 중합온도 조건으 로 3 종류의 디카복실산과 중합시켜 36가지의 새로운 지방족 폴리 에스테르를 얻었다.

2.5 박막 시료의 제조

제조한 새로운 지방족 폴리에스테르 2.0 g을 20 mL의 클로로포름 용매에 녹인 후 teflon sheet가 안쪽 면에 붙어있는 유리틀(7×7 cm) 에 넣고 48시간 동안 상온에서 자연적으로 증발시킨 후 진공오븐에 서 24시간 건조시켜 용매가 완전히 제거된 필름(180~200 µm)을 제 조하였다.

2.6 가수분해 실험

일정한 두께의 고분자 필름을 직사각형 크기(10×10 mm)로 자른 다음 pH 7의 phosphate 완충용액을 사용하여 체외(*in-vitro*) 가수분해 실험을 실시하였다. 즉 필름 조각의 무게를 잰 후 25 mL의 vial에 넣 고 15 mL의 완충용액을 가한 다음 37 ℃의 항온조 안에서 일정시간 동안 가수분해 실험을 수행하였다. 분해반응 후 완충용액을 여과지 로 여과하였다. 분해된 박막 시료를 증류수로 충분히 세척하여 표 면에 남아있는 완충용액을 제거한 다음, 48시간 동안 진공 건조한 후 무게를 측정하였다. 중량감소율(%)은 필름의 초기무게와 가수분 해된 시료의 건조무게의 차로부터 계산하였다.¹⁴

3. 결과 및 토론

3.1 새로운 지방족 에스테르계 디올의 합성

단량체인 GL을 이관능성 개시제인 BD, HD, CHD, 또는 CHDM으 로 개환반응시켜 개시제의 양 말단에 GL이 1몰씩 도입된 4종류의 새로운 지방족 에스테르계 디올인 BGD, HGD, CHGD, CHMGD을 합성하였다(Scheme 1). 그들의 구조는 ¹H-NMR 및 IR 스펙트럼들로 서 확인하였다.

Figure 1는 대표적이 디올인 BGD의 ¹H-NMR 스펙트럼으로서 고리

Scheme 1. Synthesis of the sequentially ordered aliphatic ester diols.

Figure 1. ¹H-NMR spectrum of the BGD.

형 단량체인 GL의 에스테르기들 사이의 메틸렌(-CH₂-)기의 수소가 5.0에서 4.8 ppm 부근으로 이동하였다. 이런 사실은 고리형의 GL이 개환되었음을 뒷받침한다. 한편, 새로운 BGD(또는 HGD)의 에스테르 기들 사이에 존재하는 메틸렌(-CH₂-)기의 수소는 4.85(H_a)과 4.75 ppm (H_a)에서 각각 분리되어 나타났다. 이외에 CHGD에서는 히드록시기 옆의 메틸렌기와 에스테르기들 사이의 메틸렌기가 4.15과 4.3, 4.75와 4.85 ppm에서 각각 서로 다른 두 종류의 수소 피크로 나타났다. 또한 CHMGD의 시클로핵실과 에스테르기들 사이의 메틸렌기는 4.0과 4.1 ppm에서, 히드록시기의 옆에 있는 메틸렌기는 4.15와 4.3 ppm에 서, 에스테르기들 사이의 메틸렌기는 4.75와 4.85 ppm에서 각각 나 타났다. 또한 이들 특성피크의 수소적분비가 예상했던 구조와 잘 일치하였다. 이런 현상은 CHGD와 CHMGD 디올들이 시클로핵실기 를 사이에 두고 cis-trans 이성체의 혼합물로 존재하기 때문이다. 따라서 합성된 디올들은 도입된 분자구조가 규칙적으로 배열된 새로운 지방족 에스테르계 디올들임을 알았다.¹⁵

한편, BGD를 IR 스펙트럼을 측정한 결과 단량체 GL의 에스테르 기에서 나타나는 1764 cm⁻¹ 부근의 강한 흡수 띠가 반응 후 1751 cm⁻¹ 로 이동하였고, 또 GL에서는 볼 수 없던 히드록시 그룹이 3481 cm⁻¹ 에서 폭 넓게 나타났다. 이런 사실은 고리형 GL의 에스테르기가 개 시제로 사용된 BD의 히드록시 그룹에 의해 개환되어 선형의 BGD 구 조로 전환되었다는 것을 의미한다. 이외에 HGD 및 CHGD와 CHMGD 의 경우도 BGD와 같은 경향을 보였다.

3.2 새로운 폴리에스테르의 합성

앞서 합성된 4종류의 새로운 지방족 에스테르계 디올과 SCA, APA, 또는 SBA와 같은 기존의 지방족 디카복실산과 용매 없이 170 ℃에 서 축합중합시켰다. 그 결과 새로운 디올과 지방족 디카복실산에 존 재하는 분자구조의 배열이 고분자 사슬 내에 규칙적으로 도입된 새 로운 지방족 폴리에스테를 얻었다(Scheme 2).

한편, 제조된 새로운 폴리에스테르들의 열적성질과 생분해 특성에 미치는 분자구조의 배열의 영향을 조사하기 위하여, 온도를 170에 서 190과 220 ℃로 올려 용융중합 반응을 일으켰다. 그 결과 성장 된 고분자 사슬들 내에 존재하는 에스테르 그룹과 카복실산(또는 알 콜) 그룹들 사이에 아래의 반응기구와 같은 에스테르교환 반응(transesterification)이^{16,17} 일어난다는 사실을 관찰하였다. 따라서 170 ℃에 서 제조된 중합체와 달리 분자구조가 무질서하게 배열된 지방족 폴 리에스테르가 얻어졌다.

Scheme 2. Synthesis of the new sequentially ordered aliphatic polyesters.

Table 1은 새로운 지방족 폴리에스테르의 중합조건과 결과이다. 중합전환율은 중합온도가 170, 190 ℃일 때는 약 70~90%이었고, 220 ℃일때는 예상과 달리 35~80%로 낮았다. 이것은 얻어진 중합 체의 색깔이 황색으로 변한 것으로 미루어 중합 중 분해가 일부 수 반되었다는 사실을 알 수 있다. 한편 단량체로 사용된 디올에 존재 하는 메틸렌기의 수가 증가할수록(BGD → HGD) 합성된 중합체의 고유점도는 증가하였다. 이것은 중합체 사슬들 사이의 수소결합이 증 가되기 때문으로 생각된다. 한편, 170 ℃에서 HGD와 SB로 제조된 중합체(HGSB-170)의 분자량을 GPC로 측정한 결과 *M*_n 값이 18000이었 다. 그러나 220 ℃에서 중합된 HGSB-220의 경우 중합전환율은 감 소하였지만, 분자량은 29000으로 증가되었다.

제조된 중합체들의 화학적 미세구조의 배열을 ¹H-NMR 및 ¹³C-NMR 스펙트럼으로부터 간접적으로 확인하였다. Figure 2는 CHGD와 SCA로부터 합성한 대표적인 새로운 지방족 폴리에스테르인 CHGSC 의 중합온도에 따른 ¹H-NMR 스펙트럼이다. 170 ℃에서 제조된 중합 체의 경우, 특성 피크들의 수소적분비가 예상했던 구조와 잘 일치한 사실로부터 원하는 분자구조가 규칙적으로 배열된 CHGSC가 합성되

 Table 1. Polymerization Conditions and Results of the New Aliphatic

 Polyesters

Polymer	Diol	Diacid	Conversion(%)			$oldsymbol{\eta}_{ ext{inh}}{}^{a}$		
			170^{b}	190^{b}	220 ^b	170 ^b	190^{b}	220^{b}
BGSB	BGD	Suberic Acid	72	76	36	0.16	0.24	0.30
HGSB	HGD	Suberic Acid	83	82	68	0.44	0.61	0.86
CHGSB	CHGD	Suberic Acid	90	83	73	0.26	0.29	0.20
CHMGSB	CHMGD	Suberic Acid	84	80	82	0.35	0.36	0.42
BGAP	BGD	Adipic Acid	72	70	77	0.22	0.18	0.26
HGAP	HGD	Adipic Acid	78	78	62	0.33	0.55	0.82
CHGAP	CHGD	Adipic Acid	90	82	с	0.19	0.29	с
CHMGAP	CHMGD	Adipic Acid	84	78	71	0.20	0.21	0.15
BGSC	BGD	Succinic Acid	75	74	55	0.35	0.42	0.76
HGSC	HGD	Succinic Acid	77	71	37	0.34	0.36	0.49
CHGSC	CHGD	Succinic Acid	76	73	58	0.20	0.23	0.17
CHMGSC	CHMGD	Succinic Acid	64	67	с	0.23	0.31	с

^aInherent viscosity was measured in CHCl₃(0.5g/dL) at 25 °C.^bMelt polymerization was caried out at 170, 190, or 220 °C. ^bDecomposed during melt polymerization.

Figure 2. ¹H-NMR spectra of the CHGSC polyesters prepared at different polymerization temperature: (a) 170 $^{\circ}$ C and (b) 190 $^{\circ}$ C.

Figure 3. ¹³C-NMR spectrum of the HGAP polyester prepared at 170 °C.

었음을 알았다(Figure 2(a)). 그러나 중합온도가 170에서 190 ℃, 또는 220 ℃로 증가함에 따라 분자구조가 규칙적인 중합체에서는 볼 수 없었던 새로운 수소 피크들이 3.4~3.7과 5.5~5.7 ppm 사이에서 나 타났으며, 또한 특성 피크들의 수소적분비가 변하는 경향을 보였다 (Figure 2(b)). 즉 중합온도가 상승함에 따라 에스테르교환 반응이 점 차 증가되고 결국 고분자 구조의 규칙성이 파괴되기 때문이다. 이런 결과는 얻어진 중합체의 유리전이온도가 감소한다는 Table 2의 결과 와도 잘 일치한다.

한편, Figure 3은 HGD와 APA로부터 얻어진 분자구조가 규칙적으 로 배열된 새로운 지방족 폴리에스테르인 HGAP-170의 ¹³C-NMR 이다. 중합반응을 통하여 단량체인 HGD의 OH 옆의 탄소 피크 위치 가 61에서 65 ppm으로 이동되었음을 확인하였다. 이것은 중합반응 에 의해 디올의 양 말단에 존재하는 OH가 에스테르기로 전환되었 다는 것을 의미한다. 또 단량체인 HGD와 APA의 탄소 위치가 중 합체 사슬의 탄소 위치와 동일하다는 것은 도입된 단량체의 분자 구조가 중합체 사슬에 일정하게 배열되었음을 뜻한다.

이상의 결과를 근거로, 중합반응 중 에스테르교환 반응을 억제하 고 분자구조가 규칙적으로 배열된 지방족 폴리에스테르를 제조하기 위해서는 중합온도를 가급적 낮게 유지해야 한다.

3.3 새로운 지방족 폴리에스테르의 열적성질

DSC와 TGA를 이용하여 합성된 새로운 지방족 폴리에스테르들의 열적거동 및 열적안정성을 확인하였다. Table 1에 요약된 결과에서 보는 바와 같이 디올로서 HGD와 디카복실산으로서 SCA, APA, 또 는 SBA를 각각 중합시켜 얻은 중합체들의 경우, 사용된 디카복실 산의 메틸렌기 길이가 길어질수록 Tg가 -15, -26, -32 ℃로 점점 감소 하는 경향을 보였다. 또 SCA와 BGD, HGD, CHGD, CHMGD를 각 각 170 ℃에서 중합시켜 얻은 중합체들의 경우도 사용된 디올의 메 틸렌기 길이가 BGD에서 HGD로 길어질수록 Tg가 1.0에서 -15 ℃ 로 감소하였다. 이것은 메틸렌기의 증가가 고분자 사슬의 유연성을 증가시켰기 때문이라 생각된다.¹³ 반면에 시클로헥실과 같은 고리형 그룹이 도입된 CHGD와 CHMGD의 경우에는 선형구조인 BGD 또 는 HGD 디올보다 고분자의 강직도가 증가하여 제조된 중합체의 Tg 가 높게 나타났다. 한편, CHGD와 SCA 또는 SBA로부터 제조된 중합체들의 Tg는 중합온도가 170에서 190 ℃, 또는 220 ℃로 상승함 에 따라 감소하는 경향을 보였다. 이런 현상은 전술한 에스테르교환

Dolumon	$T_{g}(^{\circ}\mathrm{C})$			Temp. of 10% wt. loss(°C)			
Polymer	170^{b}	190 ^b	220^{b}	170 ^b	190 ^b	220^{b}	
BGSB	-30	-22	-32	312	307	354	
HGSB	-32	-34	-38	328	342	346	
CHGSB	5	1	-2	309	314	310	
CHMGSB	-5	-8	-10	341	335	345	
BGAP	-16	-13	-17	303	291	368	
HGAP	-26	-27	-29	322	318	365	
CHGAP ^a	12	13	с	303	343	с	
CHMGAP	-5	-8	-7	321	304	335	
BGSC	1	3	-2	286	289	377	
HGSC	-15	-17	-13	305	312	342	
CHGSC ^a	29	20	23	298	305	326	
CHMGSC	18	18	с	315	318	с	

 Table 2. Thermal Transitions and Stabilities of the New Aliphatic

 Polyesters

^aCHGSC and CHGAP polyesters prepared at 170 $^{\circ}$ C showed. $T_{\rm m}$ at 30 and 40 $^{\circ}$ C, respectively. ^bMelt polymerization was caried out at 170, 190, or 220 $^{\circ}$ C. ^cDecomposed during melt polymerization.

반응으로 인한 중합체 구조의 배열이 무질서해지기 때문이다.

이외에, Table 2에서 중합체들의 열적안정성을 비교해 보면, 디올을 BGD에서 HGD로, 디카복실산을 SCA에서 APA 또는 SBA로 사용함 에 따라 즉 디올과 디카복실산의 메틸렌기의 수가 증가할수록 10% 무게감소 온도가 증가하는 경향을 보였다. 이것은 고분자 사슬 내 에 존재하는 메틸렌기의 길이가 길수록, 분자들 사이에 수소결합이 증가하기 때문이다. 또 중합온도가 170, 190, 220 ℃로 높아질수록 중 합체의 분자량이 증가할 뿐만 아니라 열적안정성도 향상되는 경향 을 보였다.

3.4 새로운 지방족 폴리에스테르의 생분해성 실험

일반적으로 지방족 폴리에스테르 고분자의 생물학적 분해는 에 스테르기의 가수분해 반응에 의해 일어난다. 가수분해의 속도에 영 향을 미치는 인자로는 고분자의 결정성, *T*g, 분자량 및 표면상태 등 이 있다. 이외에 사용된 가수분해 용액의 pH와 완충용액의 농도 등 도 분해속도에 영향을 준다.¹⁸

본 연구에서는 분해속도와 반응기구에 미치는 고분자 사슬에 도 입된 미세구조 배열의 영향을 조사하기 위하여, 생체와 유사한 조 건인 pH 7의 인산염 완충용액을 사용하여 37 ℃에서 제조된 필름 을 가수분해시켜 시간에 따른 무게의 감소를 측정하였다.

Figure 4은 새로운 디올과 APA를 170 ℃에서 중합시켜 제조한 폴 리에스테르들의 시간에 따른 가수분해 속도를 보여준다. 즉 디올로 서 CHGD 또는 HGD로부터 제조된 폴리에스테르(CHGAP 및 HGAP) 들의 가수분해 속도가 훨씬 느렸다. 이것은 중합체 사슬이 강직하고 분자간 수소결합이 클수록 고분자의 결정성이 증가되어 가수분해 반 응에서 도입된 인산 음이온과 물분자들이 고분자 사슬 사이로 침투 하기 어렵기 때문이다. 이외에 또 다른 결정성 고분자인 CHGAP도 BGAP, HGAP, CHMAP와 비교할 때 분해 속도가 가장 느리게 일어 남을 관찰하였다. 이런 결과는 합성된 CHGSC 및 CHGAP의 중합체 의 *T*_m이 각각 40와 30 ℃로 관찰된 결과와 잘 일치한다(Table 2). 반 면에 보다 유연한 디올들인 CHMGD와 BGD로부터 제조된 중합체 들의 경우, 분해속도가 1주일까지 매우 빨리 진행되다가 그 후 분해 가 거의 진행되지 않았다. 이런 경향은 지방족 폴리에스테르의 가수 분해 반응은 일반적으로 무정형 영역에서 먼저 일어난 다음 결정 영역에서 분해가 진행된다는 사실로 설명될 수 있다.¹⁹ 즉 시클로핵

Figure 4. Effect of the different diol on the mass loss of the polyesters at pH 7 and 37 °C: ■, BGAP-170; ▲, HGAP-170; ●, CHGAP-170; ◆, CHMGAP-170.

Figure 5. Effect of the polymerization temperature on the mass loss of the HGSC and HGAP at pH 7 and 37 °C: (a) ■, HGSC-170; ▲, HGSC-190; ●, HGSC-220; (b) ■, HGAP-170; ▲, HGAP-190; ●, HGAP-220.

실 그룹의 양쪽에 메틸렌기가 하나씩 도입된 유연한 CHMGD(또는 BGD)로부터 제조된 무정형의 중합체가 결정성 중합체인 CHGAP(또 는 HGAP)보다 가수분해 속도가 초기에 매우 빨리 진행되었기 때 문이다.

Figure 5는 중합온도 170, 190, 또는 220 °C에서 제조한 HGSC(a)와

Figure 6. SEM micrographs of the CHGAP prepared at 170 $^{\circ}$ C. (a) before hydrolysis; (b) after hydrolysis for 2 weeks; (c) after hydrolysis for 3 weeks; and (d) after hydrolysis for 2 weeks(the CHGAP prepared at 220 $^{\circ}$ C); film thickness, 180 µm.

HGAP(b) 중합체들의 시간에 따른 가수분해 속도의 변화를 보여준 다. 즉 중합온도가 증가함에 따라 합성된 중합체의 분자량이 높음 에도 불구하고, 가수분해 속도가 빨라짐을 볼 수 있다.

Figure 6은 새로운 지방족 폴리에스테르인 CHGAP의 필름을 일 정시간 가수분해한 후 필름 표면의 변화를 SEM으로 관찰한 것이다. Figure 6(a), (b), (c)는 170 ℃에서 제조된 분자구조가 규칙적으로 배열 된 CHGAP-170 필름의 표면사진으로서 가수분해 시간이 증가함에 따라 필름 표면에 작은 균열들이 점점 증가되는 것을 볼 수 있다. 한편, 가수분해 시간이 2주일로 동일하였음에도 불구하고 220 ℃에 서 제조된 필름의 표면이 170 ℃보다 균열이 훨씬 크게 일어남을 Figure 6(d)에서 볼 수 있다. 이런 현상은 중합온도가 상승함에 따라 에스테르교환 반응이 점차 증대되어 결정성 구조의 고분자가 결국 무정형의 구조로 전환되기 때문이다. 이들 결과는 중합온도가 상승 할수록 합성된 중합체의 T_g 가 감소한다는 Table 1의 결과와 잘 일치 한다.

4. 결론

합성한 새로운 지방족 에스테르계 디올 단량체와 기존의 카복실 산을 중합온도를 변경시키면서 축합중합 반응을 일으켜 분자구조 가 규칙적으로 배열된 새로운 지방족 폴리에스테르와 무질서하게 배열된 중합체를 제조하였다. 한편, 중합온도가 170에서 220 ℃로 높 아지면 고분자 사슬들 사이에 에스테르교환 반응이 일어나 폴리에스 테르의 미세구조가 무질서하게 배열됨을 확인하였다. 그 결과 분자 구조가 규칙적으로 배열된 중합체의 Tg 보다 감소함은 물론 완충용 액 속에서 가수분해의 속도가 빨라지는 현상을 보였다. 이외에 제조 된 지방족 폴리에스테르 사슬에 존재하는 메틸렌기의 길이가 증가 할수록 Tg는 감소하였지만, 열적안정성은 반대로 증가하였다. 이런 결과들을 근거로 고분자 사슬 내에 도입된 화학적 미세구조의 배열 이 중합체의 열적성질과 가수분해 속도에 큰 영향을 미친다는 사실 을 확인하였다.

감사의 글: 본 연구는 KAIST 기능성고분자신소재연구센타의 재 정적인 지원과 한양대학교의 2001년도 교내연구비의 일부 후원으로 이루어졌으며, 이에 감사드린다.

참고문헌

- 1. M. Vert and J. Mauduit, Biomaterials, 15, 1209 (1994).
- J. P. Singhal, H. Singh, and A. R. Ray, *Rev. Macromol. Chem.*, *Phys.*, C28, 475 (1988).
- D. Satyanarayana and P. R. Chatterji, *Rev. Macromol. Chem. Phys.*, C33, 349 (1993).
- 4. R. Bhardwaj and J. Blanchard, J. Pharm., 170, 109 (1998).
- 5. H. Winet and J. Y. Bao, J. Biomed. Mater. Res., 40, 567 (1998).
- D. L. Wise, T. S. Fellmann, J. E. Sanderson, and R. L. Wentworth, *Drug Carriers in Biology and Medicine*, Academic Press, New York, p 237 (1979).
- S. H. Lee, Y. K. Han, Y. H. Kim, and S. H. Kim, J. Polym. Sci.; Part A: Polym. Chem., 40, 2545 (2002).
- 8. D. Bendix, Polym. Degrad. Stab., 59, 129 (1998).
- 9. H. R. Kricheldorf, T. Mang, and J. M. Jonte, *Macromolecules*, **17**, 2173 (1984).
- P. Mainil-Varlet, R. Curtius, and S. Gogolewski, J. Biomed. Mater. Res., 36, 360 (1997).
- S. H. Kim, Y. K. Han, H. Y. Kim, K. D.Ahn, and T. Chang, *Makromol. Chem.*, **194**, 3229 (1993).
- K. J. Zhu, S. Bihai, and Y. Shilin, J. Polym. Sci.; Part A: Polym. Chem., 27, 2151 (1989).
- M. Okada, Y. Okada, A. Tao, and K. Aoi, J. Appl. Polym. Sci., 62, 2257 (1996).
- M. Okada, K. Tachikawa, and K. Aoi, J. Polym. Sci.; Part A: Polym. Chem., 35, 2729 (1997).
- S. H. Lee, Y. K. Han, E. R. Kim, and S. S. Im, *Polymer(Korea)*, 21, 926 (1997).
- 16. K. Tomita and H. Ida, Polymer, 14, 55 (1973).
- S. K. Na, B. G. Kong, C. Y. Choi, J. G. Kim, W. H. Hong, and J. W. Nah, *Polyme(Korea)*, 29, 41 (2005).
- K. R. Hoffman and D. J. Casey, J. Polym. Sci.; Part A: Polym. Chem., 23, 1939 (1985).
- 19. C. Shih, J. Controlled Release, 834, 9 (1995).

319