# 올리고피리디닐메틸렌아미노피리딘올과 금속 착화물의 합성, 분석 및 열분해 특성 연구 

İsmet Kaya ${ }^{\dagger}$ and Murat Gül

Çanakkale Onsekiz Mart University, Faculty of Sciences and Arts, Department of Chemistry, 17020, Çanakkale, Turkey
(2007년 7월 3일 접수, 2008년 3월 5일 수정, 2008년 3월 7일 채택)

# Synthesis, Characterization, and Thermal Degradation of Oligo-2-[(pyridin-4-yl-)methyleneamino]pyridine-3-ol and Oligomer-Metal Complexes 

İsmet Kaya ${ }^{\dagger}$ and Murat Gül<br>Çanakkale Onsekiz Mart University, Faculty of Sciences and Arts, Department of Chemistry, 17020, Çanakkale, Turkey<br>(Received July 3, 2007; Revised March 5, 2008; Accepted March 7, 2008)


#### Abstract

This study examined the oxidative polycondensation reaction of $2-[(p y r i d i n-4-y l-)$ methyleneamino] pyridine $-3-$ ol ( $2-\mathrm{PMAP}$ ) using air $\mathrm{O}_{2}$ and NaOCl oxidants at various temperatures and times in aqueous alkaline and acidic media. Under these reactions, the optimum reaction conditions using air $\mathrm{O}_{2}$ and NaOCl oxidants were determined for $2-\mathrm{PMAP}$. The number-average molecular weight $\left(M_{\mathrm{n}}\right)$, weight average molecular weight $\left(M_{\mathrm{w}}\right)$, and polydispersity index (PDI) values of O-2-PMAP synthesized in aqueous alkaline media were found to be 960,1230 , and $1.281 \mathrm{~g} \mathrm{~mol}^{-1}$, using NaOCl , and 1030,1520 , and $1.476 \mathrm{~g} \mathrm{~mol}^{-1}$, using air $\mathrm{O}_{2}$, respectively. At the optimum reaction conditions, the yield of $\mathrm{O}-2-\mathrm{PMAP}$ in aqueous alkaline media was $92.50 \%$ and $85.70 \%$ for air $\mathrm{O}_{2}$ and NaOCl oxidants, respectively. The yield of $\mathrm{O}-2-\mathrm{PMAP}$ in aqueous acidic media was $88.5 \%$ and $88.0 \%$ for NaOCl and air $\mathrm{O}_{2}$ oxidants, respectively. $\mathrm{O}-2-\mathrm{PMAP}$ was characterized by ${ }^{1} \mathrm{H}-,{ }^{13} \mathrm{C}-\mathrm{NMR}, \mathrm{FT}-\mathrm{IR}$, UV-vis, SEC , and elemental analysis. TGA-DTA analysis revealed O-2-PMAP and its oligomer metal complex compounds, such as $\mathrm{Co}^{+2}, \mathrm{Ni}^{+2}$, and $\mathrm{Cu}^{+2}$, to be stable against thermal decomposition and their weight losses at $1000{ }^{\circ} \mathrm{C}$ were found to be $73.0,58.0,53.5 \%$, and $50.0 \%$, respectively. In addition, the antimicrobial activities of the monomer and oligomer were tested against E. Coli (ATCC 25922), E. Faecelis (ATCC 29212), P. Auroginasa (ATCC 27853), and S. Aureus (ATCC 25923).


Keywords : oligo-2-[(pyridin $-4-\mathrm{yl}-)$ methyleneamino $]$ pyridine $-3-$ ol, thermal analysis, oxidative polycondensation, oligomer-metal complexes, Antimicrobial activity.

## Introduction

Oligophenols including conjugated bonding and hydroxyl group have been studied for more than 60 years and they have been used in various fields. They have useful properties such as paramagnetism, semi-conductivity, and resisting to high energy. Because of these properties, they are used to prepare composites having high resistance at high temperature, thermo-stabilisators, graphite materials, and epoxy oligomer and block copolymers, photo-resists, materials which are antistatic and enduring to flame. ${ }^{1-10}$ By adding of other

[^0]functional groups to these compounds, they can be profited to new useful properties. Schiff based polymers had been demonstrated anti-microbial activities against various bacteria, yeast, and fungus. Oligophenols which have a lot of functional groups may be used for cleaning poisonous heavy metals in the industrial waste waters. Therefore, the synthesis of oligomer-metal complex compounds is very important to analytical and environmental chemistry. It seemed advantageous to attempt to design and prepare a polymer-based chelating ligand, which would be able to form complexes with a variety of transition metals and therefore have a large range of applications. ${ }^{11}$
In this paper, we have investigated the effects of different
parameters such as temperature, reaction time, initial concentrations of $\mathrm{NaOCl}, \mathrm{HCl}$ and alkaline for the preparation of oligo-2-[(pyridin-4-yl-) methyleneamino] pyridine-$3-$ ol and then we determined optimum reaction conditions with oxidative polycondensation reaction for the yield of O-2-PMAP. The O-2-PMAP was characterized by FTIR, UV-Vis, ${ }^{1} \mathrm{H}-$, ${ }^{13} \mathrm{C}-\mathrm{NMR}$, elemental analysis and size exclusion chromatography (SEC) techniques. Futhermore, oligomer-metal complex compounds were synthesized from the reactions of $\mathrm{O}-2-\mathrm{PMAP}$ with Co (II), Ni (II), and Cu (II) acetates. Also, thermal stabilities of $\mathrm{O}-2-\mathrm{PMAP}$ and oligo-mer-metal complex compounds were studied by TGADTA techniques. Antimicrobial tests of O-4-PMAP were investigated against $S$. Aureus (ATCC 25923), E. Faecelis (ATCC 29212), E.Coli (ATCC 25922) and P. Auroginasa (ATCC 27853).

## Experimental

Materials. 4-Pyridinecarbaldehyde (4-PCA), 2-amino3 -hydroxy-pyridine, methanol, ethanol, benzene, acetone, acetonitrile, toluene, heptane, hexane, 1 -butanol, isoamyl alcohol, methyl acetate, ethyl acetate, dioxane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, $\mathrm{CCl}_{4}$, tetrahydrofurane (THF), $N, N^{\prime}$-dimethylformamide (DMF), dimethylsulfoxide (DMSO), $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{NaOH}, \mathrm{KOH}$, hydrochloric acid $(\mathrm{HCl}, 37 \%), \mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{H}_{2} \mathrm{O}, \mathrm{Co}-$ $\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} 4 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Ni}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} 4 \mathrm{H}_{2} \mathrm{O}$ were supplied from Merck Chemical Co. (Germany) and they were used as received. Sodium hypochloride $(\mathrm{NaOCl}),(30 \%$, aqueous solution) was supplied from Paksoy Co. (Turkey). 2[(Pyridin $-4-y l-)$ methyleneamino] pyridine $-3-$ ol synthesized from condensation reaction of 4-pyridinecarbaldehyde with 2-amino-3-hydroxy-pyridine.
Syntheses of 2-[(pyridin-4-yl-) methyleneaminolpyridine-3-ol (2-PMAP) Schiff Base. 4-PCA ( $2.675 \mathrm{~g}, 0.025 \mathrm{~mol}$ ) and 2-amino-3-hydroxy-pyridine ( $2.750 \mathrm{~g}, 0.025 \mathrm{~mol}$ ) were dissolved in THF ( 50 mL ) and placed into a 50 mL twonecked round-bottom flask (Scheme 1). It was fitted with a condenser and thermometer. The mixture was stirred magnetically on a water bath at $70{ }^{\circ} \mathrm{C}$ for 3 h . Then, the product was recrystallized in THF and it was dried in an oven at $105{ }^{\circ} \mathrm{C}$ (m.p.: $203{ }^{\circ} \mathrm{C}$; yield $96 \%$ ).


Scheme 1. Synthesis of 2-[(pyridin-4-yl-)methyleneamino] pyridine-3-ol.


Scheme 2. Synthesis of oligo-2-[(pyridin $-4-\mathrm{yl}-)$ methyleneamino] pyridine $-3-$ ol.

Calcd. for 2-PMAP: C, 66.33; H, 4.52; N, 21.11. Found: C, 66.00; H, 4.22; N, 20.85. FT-IR $\left(\mathrm{KBr} ; \mathrm{cm}^{-1}\right): v(\mathrm{CH}=\mathrm{N})$ $1604 \mathrm{~s} ; v(\mathrm{C}-\mathrm{O}) 1286 \mathrm{~s} ; v(\mathrm{C}=\mathrm{C}) 1574,1492 \mathrm{~s}$; v (aromatic $\mathrm{C}-\mathrm{H}) 3033 \mathrm{~s} ; v(\mathrm{Ar}-\mathrm{OH}) 3379 \mathrm{~s} ; v(\mathrm{C}-\mathrm{N}=\mathrm{C}) 1382 \mathrm{~s} .{ }^{1} \mathrm{H}-$ NMR (DMSO): $\delta \mathrm{ppm}, 10.10(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ; 8.67(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N})$; 6.92 (d, 1H, Ar-Ha); 6.40 (m, 1H, Ar-Hb); 7.75 (d, 1H, $\mathrm{Ar}-\mathrm{Hc}$ ) ; 7.35 (d, 2H, Ar-Hdd'); 8.50 (d, 2H, Ar-Hee'). ${ }^{13} \mathrm{C}$-NMR (DMSO) : ppm, 149.85 (C1-ipso), 123.39 (C2), 119.50 (C3), 140.35 (C4), 150.51 (C5-ipso), 168.30 (C6), 135.46 (C7-ipso), 122.44 (C8), 150.67 (C9).

Synthesis of $\mathrm{O}-2$-PMAP with NaOCl and air $\mathrm{O}_{2}$ in Aqueous Alkaline Medium. O-2-PMAP was synthesized through oxidative polycondensation of $2-$ [(pyridin-4-yl-) methyleneamino] pyridine $-3-$ ol with aqueous solutions of $\mathrm{NaOCl}(30 \%)$ and air $\mathrm{O}_{2}$, respectively. ${ }^{12}$ The $2-\mathrm{PMAP}\left(0.2985 \mathrm{~g}, 1.5 \times 10^{-3}\right.$ $\mathrm{mol})$ was dissolved in an aqueous solution of $\mathrm{KOH}(10 \%$, $\left.0.084 \mathrm{~g}, 1.5 \times 10^{-3} \mathrm{~mol}\right)$ and placed into a 50 mL threenecked round-bottom flask (Scheme 2). It was fitted with a condenser, thermometer, stirrer and an addition funnel containing NaOCl . After heating to $40{ }^{\circ} \mathrm{C}, \mathrm{NaOCl}$ was added drop by drop over about 30 min . The reaction mixtures were stirred at the various temperatures and durations (Table 1). The air $\mathrm{O}_{2}$ was passed into an aqueous solution of $\mathrm{KOH}(20 \%)$ before being sent through the reaction tube to prevent water loss in the reaction mixture and to neutralize $\mathrm{CO}_{2}$ in the air. The reaction mixtures were cooled to room temperature, and then $1.5 \times 10^{-3} \mathrm{~mol} \mathrm{HCl}(37 \%)$ was added. The mixture was filtered and washed in 25 mL of hot water for three times and then dried in an oven at $110{ }^{\circ} \mathrm{C}$. The unreacted monomer was extracted by THF from the product.

Calcd. for O-2-PMAP : C, 67.00; H, 3.55; N, 21.32. Found: C, 66.20; H, 3.72; N, 20.90. FT-IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): v(\mathrm{O}-\mathrm{H})$ $3321 \mathrm{~s} ; v(\mathrm{C}-\mathrm{H}$ aryl) $3030 \mathrm{~m} ; ~ v(\mathrm{C}=\mathrm{N}) 1632 \mathrm{~s} ; v$ (aromatic, $\mathrm{C}-\mathrm{O}) 1261 \mathrm{~s} ; v(\mathrm{C}-\mathrm{N}=\mathrm{C}) 1372 \mathrm{~s} ; v$ (aromatic, $\mathrm{C}=\mathrm{C}) 1572$, $1487 \mathrm{~m} .{ }^{1} \mathrm{H}$-NMR (DMSO) : $\delta \mathrm{ppm}, 10.28$ (s, 1H, OH); 8.79 (s, $1 \mathrm{H}, \mathrm{CH}=\mathrm{N}$ ); 7.30 (d, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{Ha}$ in terminal position); 7.37 (m, 1H, Ar-Hb); 7.41 (d, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{Hc}$, in terminal position); 7.81 (d, 2H, Ar-Hdd'); 8.50 (d, 2H, Ar-Hee'). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO) : ppm, 150.40 (C1-ipso), 123.79 (C2), 115.43 (C3), 146.51 (C4), 151.65 (C5-ipso), 176.34123 .79 (C6), 137.12 (C7-ipso), 123.25 (C8), 152.76 (C9), 127.61 (new peak of CC coupling system).

Table 1. The Oxidative Polycondensation of 2-I(pyridin-4-yl-)methyleneaminolpyridine-3-ol Using NaOCl (Sample number: 1-21) and Air $\mathrm{O}_{\mathbf{2}}$ (Sample number: 22-35) in an Aqueous Alkaline

| Sample number | $\begin{gathered} {\left[2-\mathrm{PMAP}_{0}\right.} \\ \left(\mathrm{mol} \mathrm{~L}^{-1}\right) \end{gathered}$ | $\begin{gathered} {[\mathrm{KOH}]_{0}} \\ \left(\mathrm{~mol} \mathrm{~L}^{-1}\right) \end{gathered}$ | $\begin{gathered} {[\mathrm{NaOCl}]_{0}\left(\mathrm{~mol} \mathrm{~L}^{-1}\right) /} \\ \text { Air } \mathrm{O}_{2}(\mathrm{~L} / \mathrm{h}) \\ \hline \end{gathered}$ | Temp. <br> ( $\left.{ }^{\circ} \mathrm{C}\right)$ | Time <br> (h) | Yield of O-2-PMAP <br> (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.05 | 0.05 | 0.05 | 40 | 5 | 65.70 |
| 2 | 0.05 | 0.05 | 0.05 | 50 | 5 | 72.00 |
| 3 | 0.05 | 0.05 | 0.05 | 60 | 5 | 66.70 |
| 4 | 0.05 | 0.05 | $0 ., 05$ | 70 | 5 | 64.00 |
| 5 | 0.05 | 0.05 | 0.05 | 80 | 5 | 61.30 |
| 6 | 0.05 | 0.05 | 0.05 | 90 | 5 | 32.00 |
| 7 | 0.05 | 0.05 | 0.10 | 50 | 5 | 64.30 |
| 8 | 0.05 | 0.10 | 0.10 | 50 | 5 | 85.70 |
| 9 | 0.05 | 0.10 | 0.15 | 50 | 5 | 69.30 |
| 10 | 0.05 | 0.10 | 0.05 | 50 | 5 | 81.00 |
| 11 | 0.05 | 0.15 | 0,05 | 50 | 5 | 59.00 |
| 12 | 0.05 | 0.15 | 0.10 | 50 | 5 | 63.70 |
| 13 | 0.05 | 0.15 | 0.15 | 50 | 5 | 43.70 |
| 14 | 0.05 | 0.05 | 0.15 | 50 | 5 | 68.30 |
| 15 | 0.05 | 0.15 | 0.20 | 50 | 5 | 34.30 |
| 16 | 0.05 | 0.20 | 0.15 | 50 | 5 | 79.70 |
| 17 | 0.05 | 0.20 | 0.20 | 50 | 5 | 83.00 |
| 18 | 0.05 | 0.10 | 0.10 | 50 | 1 | 76.00 |
| 19 | 0.05 | 0.10 | 0.10 | 50 | 3 | 80.30 |
| 20 | 0.05 | 0.10 | 0.10 | 50 | 10 | 56.50 |
| 21 | 0.05 | 0.10 | 0.10 | 50 | 20 | 45.50 |
| 22 | 0.034 | 0.034 | 8.5 | 40 | 5 | 58.50 |
| 23 | 0.034 | 0.034 | 8.5 | 50 | 5 | 92.50 |
| 24 | 0.034 | 0.034 | 8.5 | 60 | 5 | 78.00 |
| 25 | 0.034 | 0.034 | 8.5 | 70 | 5 | 69.50 |
| 26 | 0.034 | 0.034 | 8.5 | 80 | 5 | 63.00 |
| 27 | 0.034 | 0.034 | 8.5 | 90 | 5 | 59.50 |
| 28 | 0.034 | 0.068 | 8.5 | 50 | 5 | 31.50 |
| 29 | 0.034 | 0.072 | 8.5 | 50 | 5 | 37.00 |
| 30 | 0.068 | 0.068 | 8.5 | 50 | 5 | 52.75 |
| 31 | 0.068 | 0.072 | 8.5 | 50 | 5 | 36.75 |
| 32 | 0.072 | 0.072 | 8.5 | 50 | 5 | 54.17 |
| 33 | 0.034 | 0.034 | 8.5 | 50 | 1 | 64.00 |
| 34 | 0.034 | 0.034 | 8.5 | 50 | 3 | 60.00 |
| 35 | 0.034 | 0.034 | 8.5 | 50 | 10 | 43.00 |

Synthesis of $\mathrm{O}-2$-PMAP with NaOCl and Air $\mathrm{O}_{2}$ in Aqueous Acidic Medium. $\mathrm{O}-2-\mathrm{PMAP}$ was synthesized through oxidative polycondensation of $2-$ [(pyridin $-4-\mathrm{yl}-)$ methyleneamino] pyridine $-3-$ ol with aqueous solutions of $\mathrm{NaOCl}(30 \%)$ and air $\mathrm{O}_{2}$, respectively. ${ }^{12}$ The $2-\mathrm{PMAP}\left(0.2985 \mathrm{~g}, 1.5 \times 10^{-3} \mathrm{~mol}\right)$ was dissolved in an aqueous solution of $\mathrm{HCl}(0.084 \mathrm{~g}, 1.5$ $\left.\times 10^{-3} \mathrm{~mol}\right)$ and placed into a 50 mL three-necked roundbottom flask (Scheme 2). It was fitted with a condenser, thermometer, stirrer and an addition funnel containing NaOCl . After heating to $40{ }^{\circ} \mathrm{C}, \mathrm{NaOCl}$ was added drop by drop over about 30 min . The reaction mixtures were stirred at the various temperatures and durations (Table 2). The air $\mathrm{O}_{2}$ was passed into an aqueous solution of $\mathrm{KOH}(20 \%)$ before being sent through the reaction tube to prevent water loss
in the reaction mixture and to neutralize $\mathrm{CO}_{2}$ in the air. The reaction mixtures were cooled to room temperature, and then $1.5 \times 10^{-3} \mathrm{~mol} \mathrm{KOH}(10 \%)$ was added. The mixture was filtered and washed in 25 mL of hot water for three times and then dried in an oven at $110{ }^{\circ} \mathrm{C}$. The unreacted monomer was extracted by THF from the product.

## Syntheses of Oligo-2-[(pyridin-4-yl-)methyleneamino]pyridine-

 3-ol-metal Complexes. Cobalt (II) Complex: A solution of $\mathrm{Co}-$ $(\mathrm{AcO})_{2} 4 \mathrm{H}_{2} \mathrm{O}\left(0.300 \mathrm{~g}, 1.21 \times 10^{-3} \mathrm{~mol}\right)$ in methanol $(10 \mathrm{~mL})$ was added to a solution of $\mathrm{O}-2-\mathrm{PMAP}\left(0.500 \mathrm{~g}, 2.5 \times 10^{-3}\right.$ $\mathrm{mol} / \mathrm{unit}$ ) in DMSO ( 20 mL ). The mixture was stirred and heated at $70{ }^{\circ} \mathrm{C}$ for 5 h (Scheme 3). The precipitated complex was filtered, washed with cold methanol/DMSO and then dried in vacuum oven (yield 63\%).Table 2. The Oxidative Polycondensation of 2-[(pyridin-4-yl-)methyleneamino]pyridine-3-ol Using Air NaOCl (Sample number: 118) and Air $\mathrm{O}_{2}$ (Sample number: 19-32) in an Aqueous Acidic

| Sample number | $\begin{gathered} {\left[2-\mathrm{PMAP}_{0}\right.} \\ \left(\mathrm{mol} \mathrm{~L}^{-1}\right) \end{gathered}$ | $\begin{gathered} {[\mathrm{HCl}]_{0}} \\ \left(\mathrm{~mol} \mathrm{~L}^{-1}\right) \end{gathered}$ | $[\mathrm{NaOCl}]_{0}\left(\mathrm{~mol} \mathrm{~L}^{-1}\right) /$ Air $\mathrm{O}_{2}(\mathrm{~L} / \mathrm{h})$ | Temp. <br> ( ${ }^{\circ}$ ) | Time <br> (h) | Yield of O-2-PMAP <br> (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.05 | 0.10 | 0.05 | 40 | 5 | 58.70 |
| 2 | 0.05 | 0.10 | 0.05 | 50 | 5 | 68.50 |
| 3 | 0.05 | 0.10 | 0.05 | 60 | 5 | 47.00 |
| 4 | 0.05 | 0.10 | 0.05 | 70 | 5 | 42.00 |
| 5 | 0.05 | 0.10 | 0.05 | 80 | 5 | 40.00 |
| 6 | 0.05 | 0.10 | 0.05 | 90 | 5 | 35.00 |
| 7 | 0.05 | 0.10 | 0.10 | 50 | 5 | 79.50 |
| 8 | 0.05 | 010 | 0.15 | 50 | 5 | 73.00 |
| 9 | 0.05 | 0.15 | 0.10 | 50 | 5 | 87.50 |
| 10 | 0.05 | 0.20 | 0.10 | 50 | 5 | 78.50 |
| 11 | 0.05 | 0.10 | 0.20 | 50 | 5 | 43.00 |
| 12 | 0.05 | 0.20 | 0.15 | 50 | 5 | 76.00 |
| 13 | 0.05 | 0.15 | 0.10 | 50 | 5 | 88.50 |
| 14 | 0.05 | 0.15 | 0.20 | 50 | 5 | 41.00 |
| 15 | 0.05 | 0.15 | 0.05 | 50 | 1 | 70.00 |
| 16 | 0.05 | 0.15 | 0.05 | 50 | 3 | 74.50 |
| 17 | 0.05 | 0.15 | 0.05 | 50 | 10 | 39.50 |
| 18 | 0.05 | 0.15 | 0.05 | 50 | 20 | 37.50 |
| 19 | 0.034 | 0.068 | 8.5 | 40 | 5 | 76.00 |
| 20 | 0.034 | 0.068 | 8.5 | 50 | 5 | 88.00 |
| 21 | 0.034 | 0.068 | 8.5 | 60 | 5 | 48.50 |
| 22 | 0.034 | 0.068 | 8.5 | 70 | 5 | 34.50 |
| 23 | 0.034 | 0.068 | 8.5 | 80 | 5 | 26.50 |
| 24 | 0.068 | 0.068 | 8.5 | 50 | 5 | 60.75 |
| 25 | 0.068 | 0.072 | 8.5 | 50 | 5 | 54.00 |
| 26 | 0.034 | 0.072 | 8.5 | 50 | 5 | 60.00 |
| 27 | 0.072 | 0.068 | 8.5 | 50 | 5 | 51.00 |
| 28 | 0.072 | 0.072 | 8.5 | 50 | 5 | 56.20 |
| 29 | 0.034 | 0.034 | 8.5 | 50 | 3 | 74.00 |
| 30 | 0.034 | 0.034 | 8.5 | 50 | 7 | 53.00 |
| 31 | 0.034 | 0.034 | 8.5 | 50 | 10 | 41.00 |
| 32 | 0.034 | 0.034 | 8.5 | 50 | 20 | 32.00 |



Scheme 3. Synthesis of oligo-2- [(pyridin $-4-\mathrm{yl}-$ ) methyleneamino] pyridine-3-ol-metal complex compounds.

Calcd. for $\mathrm{O}-2-\mathrm{PMAP}-\mathrm{Co}$ : M, 23.03. Found: M, 22.45. UV-Vis $\left(\lambda_{\max }\right): 209,237,278,335$ and 380 nm . FT-IR (KBr, $\left.\mathrm{cm}^{-1}\right): v(\mathrm{O}-\mathrm{H}) 3381 \mathrm{~s}, v(\mathrm{C}-\mathrm{H}$ aryl) $3055 \mathrm{~m}, v(\mathrm{C}=\mathrm{N}) 1636$
$\mathrm{s}, \mathrm{v}$ (aromatic, $\mathrm{C}-\mathrm{O}) 1272 \mathrm{~s}, \mathrm{v}$ (aromatic, $\mathrm{C}=\mathrm{C}) 1546,1528$, $1495 \mathrm{~m}, v(\mathrm{M}-\mathrm{O}) 559 \mathrm{~s}, v(\mathrm{M}-\mathrm{N}) 655 \mathrm{~s}$.
Nickel (II) Complex: A solution of $\mathrm{Ni}(\mathrm{AcO}){ }_{2} 4 \mathrm{H}_{2} \mathrm{O}(0.300 \mathrm{~g}$, $1.21 \times 10^{-3} \mathrm{~mol}$ ) in methanol ( 10 mL ) was added to a solution of O-2-PMAP ( $0.500 \mathrm{~g}, 2.5 \times 10^{-3} \mathrm{~mol} / \mathrm{unit}$ ) in DMSO ( 20 mL ). The mixture was stirred and heated at $70{ }^{\circ} \mathrm{C}$ for 5 h (Scheme 3). The precipitated complex was filtered, washed with cold methanol/DMSO and then dried in vacuum oven (yield 59\%).
Calcd. for $\mathrm{O}-2-\mathrm{PMAP}-\mathrm{Ni}: \mathrm{M}, 22.66$. Found: M, 22.00. UV-Vis $\left(\lambda_{\max }\right): 208,237,281,341$ and 388 nm . FT-IR (KBr, $\left.\mathrm{cm}^{-1}\right): v(\mathrm{O}-\mathrm{H}) 3370 \mathrm{~s}, \mathrm{v}(\mathrm{C}-\mathrm{H}$ aryl) $3048 \mathrm{~m}, \mathrm{v}(\mathrm{C}=\mathrm{N})$ $1608 \mathrm{~s}, v$ (aromatic, $\mathrm{C}-\mathrm{O}) 1258 \mathrm{~s}, v$ (aromatic, $\mathrm{C}=\mathrm{C}) 1561$, $1542,1491 \mathrm{~m}, v(\mathrm{M}-\mathrm{O}) 534 \mathrm{~s}, \mathrm{v}(\mathrm{M}-\mathrm{N}) 633 \mathrm{~s}$.
Copper (II) Complex: A solution of $\mathrm{Cu}(\mathrm{AcO}){ }_{2} \mathrm{H}_{2} \mathrm{O}(0.250 \mathrm{~g}$, $1.25 \times 10^{-3} \mathrm{~mol}$ ) in methanol ( 5 mL ) was added to a solution
of O-2-PMAP ( $0.500 \mathrm{~g}, 2.5 \times 10^{-3} \mathrm{~mol} / \mathrm{unit}$ ) in DMSO (20 $\mathrm{mL})$. The mixture was stirred and heated at $70{ }^{\circ} \mathrm{C}$ for 5 h (Scheme 3). The precipitated complex was filtered, washed with cold methanol/DMSO and then dried in vacuum oven (yield 62\%).
Calcd. for O-2-PMAP-Cu: M, 24.39. Found: M, 23.70. UV-Vis $\left(\lambda_{\max }\right): 206,238,280,341$ and 384 nm . FT-IR (KBr, $\left.\mathrm{cm}^{-1}\right): v(\mathrm{O}-\mathrm{H}) 3366 \mathrm{~s}, v(\mathrm{C}-\mathrm{H}$ aryl) $3090 \mathrm{~m}, v(\mathrm{C}=\mathrm{N}) 1616$ $\mathrm{s}, v$ (aromatic, $\mathrm{C}-\mathrm{O}) 1265 \mathrm{~s}, v$ (aromatic, $\mathrm{C}=\mathrm{C}$ ) 1542, 1521, $1470 \mathrm{~m}, v(\mathrm{M}-\mathrm{O}) 577 \mathrm{~s}, v(\mathrm{M}-\mathrm{N}) 641 \mathrm{~s}$.
Preparation of Microbial Cultures. Preparation of Test Microorganism and Test Compounds: E. Coli (ATCC 25922), E. Faecelis (ATCC 29212), P. Auroginasa (ATCC 27853) and S. Aureus (ATCC 25923) were used as the test organisms in an antimicrobial study. The testing bacteria were supplied from Refik Saydam Hifzısıhha Institute (Ankara, Turkey). The bacteria strains were inoculated into nutrient broth (Difco) incubated for 24 h . Using the Disc Diffusion method, the sterile Mueller Hinton Agar (Oxoid) was inoculated with the test microorganisms. ${ }^{17}$ The compounds were dissolved at a concentration of $25 \mathrm{mg} / \mathrm{mL}$ in order to obtain a final concentration of $1 \mathrm{mg} / 0.1 \mathrm{~mL}$. In all, two different concentrations of the drug were prepared ( $1 \mathrm{mg} / 1 \mathrm{~mL}$ and $0.1 \mathrm{mg} / 1 \mathrm{~mL}$ ) for the microbiological assays and absorbed on sterile paper antibiotic discs, which were placed in wells ( 6 mm diameter) cut in the agar media. The plates were incubated at $32{ }^{\circ} \mathrm{C}$ ( 24 h ). The resulting inhibition zones on the plates were measured after 48 h .
Characterization Techniques. The infrared and ultravioletvisible spectra were measured by Perkin Elmer BX II and Shimadzu UV-1208, respectively. Elemental analysis was carried out with a Carlo Erba 1106. The FT-IR spectra were recorded using KBr disc ( $4000-350 \mathrm{~cm}^{-1}$ ). UV-vis spectra of $2-\mathrm{PMAP}, \mathrm{O}-2-\mathrm{PMAP}, \mathrm{O}-2-\mathrm{PMAP}-\mathrm{Co}, \mathrm{O}-2-$ $\mathrm{PMAP}-\mathrm{Ni}$ and $\mathrm{O}-2-\mathrm{PMAP}-\mathrm{Cu}$ were determined by using DMSO. 2-PMAP and O-2-PMAP HPMDAP and OHPMDAP were characterized by using ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra (Bruker AC FT-NMR spectrometer operating at 400 and 100.6 MHz , respectively) and recorded by using deuterated $\mathrm{DMSO}-\mathrm{d}_{6}$ as a solvent at $25{ }^{\circ} \mathrm{C}$. Tetramethylsilane was used as internal standard. Thermal data were obtained by using Perkin Elmer Diamond Thermal Analysis. The TGA-DTA measurements were made between $20-1000{ }^{\circ} \mathrm{C}$ (in $\mathrm{N}_{2}$, rate $10{ }^{\circ} \mathrm{C} / \mathrm{min}$ ). The number-average molecular weight $\left(M_{\mathrm{n}}\right)$, weight-average molecular weight ( $M_{\mathrm{w}}$ ) and polydispersity index (PDI) were determined by size exclusion chromatography (SEC) of Shimadzu Co. For SEC investigations were used a SGX (100 $\AA$ and 7 nm diameter loading material) 7.7 mm i.d.x 300 mm columns; eluent: DMF/Methanol ( $4 / 1, \mathrm{v} / \mathrm{v} ; 0.4 \mathrm{~mL} \mathrm{~min}^{-1}$ ),
polystyrene standards. A refractive index detector was used to analyze the product at $25{ }^{\circ} \mathrm{C}$.

## Results and Discussion

Investigation of Synthetic Conditions of O-2-PMAP. The conditions of oxidative polycondensation reaction of 2 -PMAP with NaOCl in aqueous alkaline medium are given in Table 1. The oxidative polycondensation reaction of $2-\mathrm{PMAP}$ was immediately formed phenoxy radicals in an aqueous alkaline solution and the solution turned into brown by adding oxidants such as NaOCl and air $\mathrm{O}_{2}$. When $[\mathrm{KOH}]_{0}=[\mathrm{NaOCl}]_{0}=$ $0.1 \mathrm{~mol} / \mathrm{L}$ and $\left[2-\mathrm{PMAP}_{0}=0.05 \mathrm{~mol} / \mathrm{L}\right.$, the yield of $\mathrm{O}-2-$ PMAP was $85.70 \%$ by NaOCl at $50{ }^{\circ} \mathrm{C}$ for 5 h . When [2$\mathrm{PMAP}_{0}=[\mathrm{KOH}]_{0}=[\mathrm{NaOCl}]_{0}=0.05 \mathrm{~mol} / \mathrm{L}$, the yield of $\mathrm{O}-$ 2-PMAP was $66.70 \%$ by NaOCl at $60{ }^{\circ} \mathrm{C}$ for 5 h . The yield of O-2-PMAP increased from $64.30 \%$ to $85.70 \%$, when the concentration of KOH was increased under the same conditions. The activity of salicylaldehyde is known to be relatively higher than 2-hydroxy-1-naphtaldehyde in oxidative polycondensation. ${ }^{13}$ The conditions of oxidative polycondensation reaction of $2-\mathrm{PMAP}$ with air $\mathrm{O}_{2}$ in aqueous alkaline medium are given in Table 1. The yield of $\mathrm{O}-2-\mathrm{PMAP}$ was $62.80 \%$ at the reaction conditions such as $\left[2-\mathrm{PMAP}_{0}=\right.$ $[\mathrm{KOH}]_{0}=0.034 \mathrm{~mol} / \mathrm{L}$ and air $\mathrm{O}_{2} 8.5 \mathrm{~L} / \mathrm{h}$, at $50{ }^{\circ} \mathrm{C}$ for 5 h . The yield of O-2-PMAP was $78.0 \%$ at the reaction conditions such as $[2-\mathrm{PMAP}]_{0}=[\mathrm{KOH}]_{0}=0.034 \mathrm{~mol} / \mathrm{L}$ and air $\mathrm{O}_{2} 8.5 \mathrm{~L} / \mathrm{h}$, at $60{ }^{\circ} \mathrm{C}$ for 5 h . The reason may be depolymerization to monomer of oligomer at high temperatures.
The conditions of oxidative polycondensation reaction of $2-\mathrm{PMAP}$ with NaOCl in aqueous acidic medium are given in Table 2. The oxidative polycondensation reaction of 2-PMAP was immediately formed phenoxy radicals in an aqueous acidic solution and the solution turned into brown by adding oxidants such as NaOCl and air $\mathrm{O}_{2}$. When $[2-\mathrm{PMAP}]_{0}=0.05$ $\mathrm{mol} / \mathrm{L},[\mathrm{HCl}]_{0}=0.15 \mathrm{~mol} / \mathrm{L}$ and $[\mathrm{NaOCl}]_{0}=0.1 \mathrm{~mol} / \mathrm{L}$, the yield of O-2-PMAP was $88.50 \%$ by NaOCl at $50{ }^{\circ} \mathrm{C}$ for 5 h . When $[2-\mathrm{PMAP}]_{0}=0.05 \mathrm{~mol} / \mathrm{L},[\mathrm{HCl}]_{0}=0.1 \mathrm{~mol} / \mathrm{L}$ and $[\mathrm{NaOCl}]_{0}=$ $0.2 \mathrm{~mol} / \mathrm{L}$, the yield of $\mathrm{O}-2-\mathrm{PMAP}$ was $43.0 \%$ by NaOCl at $50{ }^{\circ} \mathrm{C}$ for 5 h . The yield of $\mathrm{O}-2-\mathrm{PMAP}$ increased from $79.50 \%$ to 87.50 , when the concentration of HCl was increased under the same conditions. According to the results, the yield $\mathrm{O}-2-\mathrm{PMAP}$ was affected by increasing both HCl and KOH concentrations. Because of electron-donor effect of azomethine group, $2-$ [(pyridin $-4-$ yl - ) methyleneamino] pyridine $-3-$ ol has oxidized both in alkaline and acidic medium by air $\mathrm{O}_{2}$ and NaOCl . In these reactions, because of formation of phenoxy radicals of $2-[($ pyridin $-4-y l-)$ methyleneamino] pyridine $-3-$ ol compound, solution medium was turned
into brown. The oxidative polycondensation of $2-$ [(pyridin-$4-\mathrm{yl}-$ ) methyleneamino] pyridine $-3-\mathrm{ol}$ was formed in an aqueous alkaline at $40-90{ }^{\circ} \mathrm{C}$ by effect of NaOCl and air $\mathrm{O}_{2}$. At this process, air $\mathrm{O}_{2}$ oxidant was more reactive than NaOCl .
The conditions of oxidative polycondensation reaction of 2-PMAP with air $\mathrm{O}_{2}$ in aqueous acidic medium are given in Table 2. The yield of O-2-PMAP was $88.0 \%$ at the reaction conditions such as $[2-\mathrm{PMAP}]_{0}=0.034,[\mathrm{HCl}]_{0}=0.068 \mathrm{~mol} / \mathrm{L}$ and air $\mathrm{O}_{2} 8.5 \mathrm{~L} / \mathrm{h}$, at $50{ }^{\circ} \mathrm{C}$ for 5 h . The yield of $\mathrm{O}-2-\mathrm{PMAP}$ was $60.0 \%$ at the reaction conditions such as $\left[2-\mathrm{PMAP}_{0}=\right.$ $0.034,[\mathrm{HCl}]_{0}=0.072 \mathrm{~mol} / \mathrm{L}$ and air $\mathrm{O}_{2} 8.5 \mathrm{~L} / \mathrm{h}$, at $50{ }^{\circ} \mathrm{C}$ for 5 h . The reason may be depolymerization to monomer of oligomer at high concentration of HCl .
Solubility. The oxidative polycondensation product of 2PMAP with NaOCl and air $\mathrm{O}_{2}$ in aqueous alkaline and acidic medium was black solid powders. O-2-PMAP was soluble in conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$, DMF and DMSO. O-2-PMAP was insoluble in toluene, acetone, methyl acetate, ethyl acetate, dioxane, benzene, methanol, ethanol, 1-butanol, isoamyl alcohol, and chlorinated solvents such as $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$ and $\mathrm{CCl}_{4}$ but it was poorly soluble in THF and acetonitrile. O-2-PMAP was insoluble in aliphatic hydrocarbons such as heptane and hexane. $\mathrm{O}-2$-PMAP with $\mathrm{Co}^{+2}, \mathrm{Ni}^{+2}$ and $\mathrm{Cu}^{+2}$ acetates was insoluble in water at room temperature. The new oligomer-metal complexes were soluble in DMSO .
Structure of O-2-PMAP. According to SEC chromatograms, the values of number-average molecular weight $\left(M_{\mathrm{n}}\right)$ and weight-average molecular weight ( $M_{\mathrm{w}}$ ) of O-2-PMAP were calculated according to a polystyrene standard calibration curve and are given in Table 3. According to the SEC analysis, the number-average molecular weight $\left(M_{n}\right)$, weight-average
molecular weight ( $M_{\mathrm{w}}$ ), and polydispersity index (PDI) values of $\mathrm{O}-2-\mathrm{PMAP}$ synthesized in an aqueous acidic medium were found to be 840,1300 and $1.548 \mathrm{~g} \mathrm{~mol}^{-1}$, using air $\mathrm{O}_{2}$, and 2770,3440 and $1.242 \mathrm{~g} \mathrm{~mol}^{-1}$, using NaOCl , respectively. These values of $\mathrm{O}-2-\mathrm{PMAP}$ synthesized in an aqueous acidic medium were higher than alkaline medium (see Table 3).
The biologic activities of 2-PMAP and O-2-PMAP were examined against E. Coli (ATCC 25922), E. Faecelis (ATCC 29212), P. Auroginasa (ATCC 27853) and S. Aureus (ATCC 25923) microorganisms. The lowest concentration $(0.1 \mathrm{mg} / 1$ mL ) had little effect while the compounds were slightly effective (inhibition zone is not shown) and they have not demonstrated to any activities for these compounds. But, 2PMAP and $\mathrm{O}-2-\mathrm{PMAP}$ demonstrated slightly the biologic activity at the high concentrations ( $1 \mathrm{mg} / 1 \mathrm{~mL}$ ). Both $2-$ PMAP and $\mathrm{O}-2-\mathrm{PMAP}$ showed very little antibacterial activity against E. Coli (ATCC 25922), E. Faecelis (ATCC 29212), P. Auroginasa (ATCC 27853) and S. Aureus (ATCC 25923) microorganisms. The inhibition zones (mm) of $2-$ PMAP and O-2-PMAP were measured as 2,$3 ; 4,6 ; 3,5 ; 2$ and 1, for E. Coli (ATCC 25922), E. Faecelis (ATCC 29212), P. Auroginasa (ATCC 27853) and S. Aureus (ATCC 25923) bacteria, respectively.

At the FT-IR spectrum of 2-PMAP, the characteristic bands of the functional groups were observed: Phenyl-OH group at $3379 \mathrm{~cm}^{-1}$, aromatic -CH groups at $3033 \mathrm{~cm}^{-1}$, azomethine $(-\mathrm{CH}=\mathrm{N})$ group at $1604 \mathrm{~cm}^{-1},-\mathrm{C}-\mathrm{N}=\mathrm{C}$ group at $1382 \mathrm{~cm}^{-1}$ and $-\mathrm{C}=\mathrm{C}$ double bonds at $1574,1492 \mathrm{~cm}^{-1}$. At the FT-IR spectrum of $\mathrm{O}-2-\mathrm{PMAP}$, the characteristic peaks of the functional groups were observed: Phenyl-OH

Table 3. The Number Average Molecular Weight ( $M_{\mathrm{n}}$ ), Weight Average Molecular Weight ( $M_{\mathrm{w}}$ ), Polydispersity Index (PDI) and \% Values of Oxidative Polycondensation Products of O-2-PMAP

| Compounds | Total |  |  | Molecular weight distribution parameters |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Fraction I |  |  |  | Fraction II |  |  |  | Fraction III |  |  |  |
|  | $M_{\text {n }}$ | $M_{\text {w }}$ | PDI | $M_{\text {n }}$ | $M_{\text {w }}$ | PDI | \% | $M_{\text {n }}$ | $M_{\text {w }}$ | PDI | \% | $M_{\text {n }}$ | $M_{\text {w }}$ | PDI | \% |
| O-2-PMAP ${ }^{\text {a }}$ | 830 | 1335 | 1.608 | 1850 | 2230 | 1.205 | 96 | 3300 | 8000 | 2.424 | 4 | - | - | - | - |
| O-2-PMAP ${ }^{\text {a }}$ | 960 | 1230 | 1.281 | 1530 | 2130 | 1.392 | 88 | 2580 | 6500 | 2.519 | 12 | - | - | - | - |
| O-2-PMAP ${ }^{\text {a }}$ | 780 | 950 | 1.218 | 1520 | 1860 | 1.227 | 85 | 1940 | 3390 | 1.747 | 10 | 17150 | 18300 | 1.067 | 5 |
| O-2-PMAP ${ }^{\text {a }}$ | 900 | 1200 | 1.333 | 1250 | 1820 | 1.457 | 95 | 12750 | 14000 | 1.098 | 5 | - | - | - | - |
| O-2-PMAP ${ }^{\text {a }}$ | 800 | 1270 | 1.588 | 1530 | 2130 | 1.397 | 90 | 2540 | 6200 | 2.441 | 10 | - | - | - | - |
| O-2-PMAP ${ }^{\text {a }}$ | 1030 | 1520 | 1.476 | 1850 | 2230 | 1.203 | 85 | 3250 | 7660 | 2.352 | 15 | - | - | - | - |
| O-2-PMAP ${ }^{\text {b }}$ | 2460 | 3560 | 1.447 | 1240 | 1450 | 1.169 | 75 | 15950 | 24100 | 1.511 | 25 | - | - | - | - |
| O-2-PMAP ${ }^{\text {b }}$ | 950 | 1550 | 1.632 | 1720 | 1980 | 1.153 | 96 | 3440 | 13100 | 3.808 | 10 | - | - | - | - |
| O-2-PMAP ${ }^{\text {b }}$ | 2770 | 3440 | 1.242 | 1400 | 1900 | 1.357 | 90 | 42600 | 51400 | 1.206 | 10 | - | - | - | - |
| O-2-PMAP ${ }^{\text {b }}$ | 12000 | 15200 | 1.267 | 1700 | 2300 | 1.353 | 65 | 65800 | 82500 | 1.254 | 35 | - | - | - | - |
| O-2-PMAP ${ }^{\text {b }}$ | 840 | 1300 | 1.548 | 1570 | 2140 | 1.361 | 90 | 2650 | 7000 | 2.642 | 10 | - | - | - | - |
| O-2-PMAP ${ }^{\text {b }}$ | 900 | 1280 | 1.422 | 1440 | 2100 | 1.460 | 95 | 8000 | 11300 | 1.413 | 5 | - | - | - | - |

[^1]group at $3321 \mathrm{~cm}^{-1}$, aromatic -CH groups at $3030 \mathrm{~cm}^{-1}$, azomethine $(-\mathrm{CH}=\mathrm{N})$ group at $1632 \mathrm{~cm}^{-1},-\mathrm{C}-\mathrm{N}=\mathrm{C}$ at 1372 $\mathrm{cm}^{-1}$ and $-\mathrm{C}=\mathrm{C}$ double bonds at $1572,1487 \mathrm{~cm}^{-1}$.
The electronic spectra of 2-PMAP and O-2-PMAP were recorded in DMSO. The $\lambda_{\text {max }}$ values of $2-\mathrm{PMAP}$ was observed in 204, 243, 279, 308 and 325 nm . K band belong to -OH and azomethine groups of 2 -PMAP was observed in 243 and 325 nm , respectively. B and R bands of 2-PMAP were observed in 279 and 308 nm . R band of $\mathrm{CH}=\mathrm{N}$ group of $2-$ PMAP was observed in 325 nm . The same bands were observed in 209, 245, 288, 320 and 345 nm at the UV-vis spectrum of $\mathrm{O}-2-\mathrm{PMAP}$. K bands belong to -OH and azomethine groups of $\mathrm{O}-2-\mathrm{PMAP}$ were observed in 245 and 320 nm , respectively. R band of $\mathrm{CH}=\mathrm{N}$ group of $\mathrm{O}-2-\mathrm{PMAP}$ was observed in 345 nm . In the oligomer-metal complexes, the low intensity bands in the $450-550 \mathrm{~nm}$ range are consistent with $\mathrm{d} \rightarrow \mathrm{d}$ transitions of the metal ions.
Polymers with azomethine structure containing 1,5-naphthyl or 1,4 -phenyl moieties had been synthesized through polycondensation of some dialdehydes with diamines. Both monomers and polymers had been characterized by FT-IR and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ techniques. Thermogravimetric analyses had been made for all the synthesized polymers in order to study their thermal behaviors. ${ }^{14}$

In order to identify the structures of $2-\mathrm{PMAP}$ and $\mathrm{O}-2-$ PMAP, the ${ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were recorded in $\mathrm{DMSO}-\mathrm{d}_{6}$ and are given in Figures 1 and 2, respectively. The signals of -OH and $-\mathrm{CH}=\mathrm{N}$ groups of $2-\mathrm{PMAP}$ and O-2-PMAP were observed in $10.10,8.67$, and 10.28 and 8.79 ppm, respectively. The ${ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}-$ NMR spectra showed the formation of oligomeric macromolecules from 2-PMAP unit by the polymerization at the ortho and para positions according to -OH group. The reaction mechanism on the coupling selectivity has been studied by Kaya et al. and three possible reaction mechanisms for the $\mathrm{C}-\mathrm{C}$ coupling selectivity have been proposed as literature. ${ }^{15}$ The peak values for C2 and C4 observed in 123.39 and 140.35 ppm in
the monomer and 123.79 and 146.51 ppm in the oligomer, respectively. Although the hydroxyl groups are involved in the formation of free radicals leading to polymer formation, they do not appear to be involved in bond formation. The phenyl rings in the oligomer appears to be linked primarily at ortho and para positions. On the other hand, the new peak was observed in 127.61 ppm in the ${ }^{13} \mathrm{C}-\mathrm{NMR}$. This peak is not present in the case of monomer. At the spectra of oligomer this new peak has assigned to $\mathrm{C}-\mathrm{C}$ coupling system (Scheme 4). Chemical shift values of carbon atoms of azomethine groups of monomer and oligomer shifted from 168.30 to 176.34 ppm, respectively. The ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of $\mathrm{O}-2-\mathrm{MPIMP}$ has been demonstrated $\mathrm{C}-\mathrm{C}$ coupling systems. Schiff base monomer and dimer interconversion combinations of radical units are proposed as literature. ${ }^{16}$


Figure 1. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $2-\mathrm{PMAP}$ (a) and $\mathrm{O}-2-$ PMAP (b).


Figure 2. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of $2-\mathrm{PMAP}$ (a) and $\mathrm{O}-2-\mathrm{PMAP}$ (b).

Thermal Analyses of O-2-PMAP and Its Oligomer-Metal Complexes. TGA-DTG-DTA traces of $\mathrm{O}-2-\mathrm{PMAP}, \mathrm{O}-2-\mathrm{PMAP}-\mathrm{Cu}$, $\mathrm{O}-2-\mathrm{PMAP}-\mathrm{Ni}$ and $\mathrm{O}-2-\mathrm{PMAP}-\mathrm{Co}$ compounds were measured under an $\mathrm{N}_{2}$ atmosphere in the temperature ranges of $20-1000{ }^{\circ} \mathrm{C}$ for their investigation of thermal stability. O-$2-\mathrm{PMAP}$ started to degradation at $203{ }^{\circ} \mathrm{C}$. The respective weight loss of O-2-PMAP was found to be $73 \%$ at $1000{ }^{\circ} \mathrm{C}$. $50 \%$ of O-2-PMAP's mass were lost at $720{ }^{\circ} \mathrm{C}$. The total weight of O-2-PMAP was lost between $225-675{ }^{\circ} \mathrm{C}$.


Scheme 4. The structure of oligo-2-[(pyridin $-4-\mathrm{yl}-)$ methyleneamino] pyridine $-3-$ ol.

TGA-DTG-DTA curves of $\mathrm{O}-2-\mathrm{PMAP}, \mathrm{O}-2-\mathrm{PMAP}-$ $\mathrm{Co}, \mathrm{O}-2-\mathrm{PMAP}-\mathrm{Ni}$ and $\mathrm{O}-2-\mathrm{PMAP}-\mathrm{Cu}$ compounds are given in Figures 3, 4, 5 and 6. The carbonaceous residues of $\mathrm{O}-2-\mathrm{PMAP}-\mathrm{Co}, \mathrm{O}-2-\mathrm{PMAP}-\mathrm{Ni}$ and $\mathrm{O}-2-\mathrm{PMAP}-\mathrm{Cu}$ compounds were found to be $42.0,46.5$ and $50.0 \%$ at $1000{ }^{\circ} \mathrm{C}$, respectively. $50 \%$ of weights of $\mathrm{O}-2-\mathrm{PMAP}-\mathrm{Co}, \mathrm{O}-2-$ $\mathrm{PMAP}-\mathrm{Ni}$ and $\mathrm{O}-2-\mathrm{PMAP}-\mathrm{Cu}$ were lost at 636,832 and $1000{ }^{\circ} \mathrm{C}$, respectively. The total weights of them were lost between $230-800{ }^{\circ} \mathrm{C}$. Metal complexes of O-2-PMAP were demonstrated higher thermal stable than oligomer. The initial degradation temperatures of $\mathrm{O}-2-\mathrm{PMAP}-\mathrm{Cu}, \mathrm{O}-2-\mathrm{PMAP}-$ Ni and $\mathrm{O}-2-\mathrm{PMAP}-\mathrm{Co}$ were found to be 226, 229 and $200{ }^{\circ} \mathrm{C}$, respectively. According to these parameters, $\mathrm{Cu}^{+2}$ complex was showed more stable than $\mathrm{Co}^{+2}$ and $\mathrm{Ni}^{+2}$ complexes. Total weight loses of $\mathrm{Cu}^{+2}, \mathrm{Ni}^{+2}$ and $\mathrm{Co}^{+2}$ complexes of $\mathrm{O}-2-$ PMAP were 50.0, 53.5 and $58.0 \%$, respectively, at $1000{ }^{\circ} \mathrm{C}$. Exothermic process of $\mathrm{Cu}^{+2}, \mathrm{Ni}^{+2}$ and $\mathrm{Co}^{+2}$ complexes of O-2PMAP started between $200-850{ }^{\circ} \mathrm{C}$ and $T_{\max }$ values were 600, 586 and $628^{\circ} \mathrm{C}$, respectively. Thermal degradation of $\mathrm{O}-2-\mathrm{PMAP}$ while complexes delineated the order as follows: $\mathrm{Cu}^{+2}>\mathrm{Ni}^{+2}>\mathrm{Co}^{+2}$. The presence of water can be seen in TGA


Figure 3. TGA-DTG-DTA curves of $\mathrm{O}-2-\mathrm{PMAP}$.


Figure 4. TGA-DTG-DTA curves of $\mathrm{O}-2-\mathrm{PMAP}-$ Co complexes.


Figure 5. TGA-DTG-DTA curves of $\mathrm{O}-2-\mathrm{PMAP}-\mathrm{Ni}$ complexes.


Figure 6. TGA-DTG-DTA curves of $\mathrm{O}-2-\mathrm{PMAP}-\mathrm{Cu}$ complexes.
curves of oligomer-metal complex compounds (Figures 4-6), showing between $2-8 \%$ wt losses in the $100-175{ }^{\circ} \mathrm{C}$ range and corresponding to the loss of water of crystallization $\left(50-150{ }^{\circ} \mathrm{C}\right)$ and coordination water $\left(150-200{ }^{\circ} \mathrm{C}\right) .{ }^{17}$

## Conclusions

According to SEC analyses, the $M_{\mathrm{n}}, M_{\mathrm{w}}$ and PDI values of O-2-PMAP were found to be $2460,3560 \mathrm{~g} \mathrm{~mol}^{-1}$ and 1.447 and $900,1280 \mathrm{~g} \mathrm{~mol}^{-1}$ and 1.422 , for NaOCl and air $\mathrm{O}_{2}$ oxidants, respectively. According to these values, molecular weight values of $\mathrm{O}-2-\mathrm{PMAP}$ were higher for NaOCl oxidant. The yields of $\mathrm{O}-2-\mathrm{PMAP}$ were found to be 85.7, $92.5,88.5$ and $88.0 \%$ by NaOCl and air $\mathrm{O}_{2}$ oxidants in an aqueous alkaline and acidic medium, respectively. Both NaOCl and air $\mathrm{O}_{2}$ demonstrated higher activity at the synthesis of $\mathrm{O}-2-\mathrm{PMAP}$. According to TG analyses, $\mathrm{O}-2-\mathrm{PMAP}$ and its oligomer-metal complex compounds shown to be stable through to temperature and thermal decomposition. O-2-PMAP, O-2-PMAP-Co, O-$2-\mathrm{PMAP}-\mathrm{Ni}$ and $\mathrm{O}-2-\mathrm{PMAP}-\mathrm{Cu}$ complex compounds lost about $68.0,58.0,53.5$ and $50.0 \%$ of weights at $1000{ }^{\circ} \mathrm{C}$,
respectively. According to these results, the highest residue was observed at the $\mathrm{O}-2-\mathrm{PMAP}-\mathrm{Cu}$ complex compound. That is, $\mathrm{O}-2-\mathrm{PMAP}-\mathrm{Cu}$ compound has higher thermal stability than $\mathrm{O}-2-\mathrm{PMAP}-\mathrm{Co}$ and $\mathrm{O}-2-\mathrm{PMAP}-\mathrm{Ni}$ com pounds. 2-PMAP and O-2-PMAP have not demonstrated to any biologic activity against E. Coli (ATCC 25922), E. Faecelis (ATCC 29212), P. Auroginasa (ATCC 27853) and S. Aureus (ATCC 25923).

## References

1. E. F. V. Scriven, Chem. Soc. Rev., 12, 129 (1983).
2. A. V. Ragimov, B. A. Mamedov, and S. G. Gasanova, Polym. Int., 43, 343 (1997).
3. B. A. Bolto, J. Macromol. Sci. Chem., A14, 107 (1980).
4. U. Casellato, P. A. Vigato, and M. Vidali, Coordinat. Chem. Reviews, 23, 31 (1977).
5. S. Kobayashi and H. Higashimura, Progress in Polymer Science, 28, 1015 (2003).
6. U. S. Yousef, Eur. Polym. J., 36, 1629 (2000).
7. İ. Kaya, A. R. Vilayetoğlu, and H. Topak, J. Appl. Polym. Sci., 85, 2004 (2002).
8. M. N. Patel and S. H. Patıl, J. Macromol. Sci. Chem., A16, 1429 (1981).
9. İ. Kaya, A. R. Vilayetoğlu, and H. Mart, Polymer, 42, 4859 (2001).
10. İ. Kaya and S. Koça, Polymer, 45, 1743 (2004).
11. İ. Kaya and S. Koyuncu, Polymer, 44, 7299 (2003).
12. İ. Kaya, H. Ö. Demir, and A. R. Vilayetoğlu, Synthetic Metals, 126, 183 (2002).
13. İ. Kaya and D. Şenol, J. Appl. Polym. Sci., 90, 442 (2003).
14. O. Catanescu, M. Grigoras, G. Colotin, A. Dobreanu, N. Hurduc, and C. I. Simionescu, Eur. Polym. J., 37, 2213 (2001).
15. İ. Kaya and A. Bilici, J. Appl. Polym. Sci, 104, 3417 (2007).
16. İ. Kaya and A. Bilici, J. Appl. Polym. Sci,, 102, 3795 (2006).
17. M. Cazacu, M. Marcu, A. Vlad, G. I. Rusu, and M. Avadanei, Journal of Organometallic Chemistry, 689, 3005 (2004).

[^0]:    $\dagger$ To whom correspondence should be addressed.
    E-mail: kayaismet@hotmail.com

[^1]:    ${ }^{a}$ Table 1, Sample No: 2, 10, 17, 21, 23 and $33 .{ }^{b}$ Table 2, Sample No: 9, 10, 13, 18, 20, 29.

