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Abstract : The tube model theory of Doi and Edwards based on de Gennes’ reptation idea is
extended to explain the viscoelastic properties of binary blends in highly entangled state com-—
posed of two linear monodisperse species with different molecular weights M; and M;. A mo-
dified tube model theory is proposed in order to incorporate the relaxation mechanism of con-
straint release by tube renewal in the polydisperse polymers. The relaxation of the high MW
component chain by the concurrent reptation and constraint release is remodeled as the dis-
engagement by pure reptation of an equivalent primitive chain. This equivalent primitive chain
model enables us to obtain the longest relaxation times of blend components and to formulate
a general stress equation. In addition to those intermolecular interactions, the stress equation
incorporates other modes of intermolecular chain dynamics such as chain length fluctuation and
fast Rouse motions. Blending laws for viscoelastic properties can then be derived from the stress
equation. The current theory is critically tested by comparing predicted values of the zero—shear
viscosity and steady-state shear compliance with available experimental data on undiluted poly-
butadienes and polystyrenes. The comparison shows that the theory agrees well with the data

over a wide range of blend composition and M,/M, ratio.

INTRODUCTION

A molecular theory for polymeric fluids relates
chain dynamics to viscoelasticity. In 1971, de
Gennes' proposed the reptation model describing
topological constraints upon the motion of poly-
mer chain or the so called entanglement co-
upling. According to his idea, a polymer chain
can move by curvilinear diffusion along its con-

tour as if it is confined in a “tube” which re-
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presents the constraints imposed by surrounding
chains, Such a snake-like diffusional motion was
called “reptation”. In 1978, Doi and Edwards
related the reptational motion and the mechanical
properties of highly entangled polymersZ, Al-
though their theory describes many viscoelastic
features of the polymers, there still remain some
discrepancies between the theory and ex-
perimental results’ They can be accounted for

by introducing several additional modes of chain
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dynamics :constraint release by tube renewal *®

contour length fluctuation of the reptating

chain®’ and short-time(Rouse) relaxations,” *

Since the viscoelasticity determines the tela-
xation of polymer stress and orientation in pro-
cessing, it plays an essential role in linking mole-
cular structures, such as molecular weight(MW)
and MW distribution(MWD), and polymer pro-
cessing.'’ The MW-dependence of viscoelasticity
is well understood by experiments or by the tube
model theory. However, understanding its relation
with MWD has been lacking even for the sim-
plest case such as linear flexible polymers, Fur-
thermore, while the original tube model theory
dealt with monodisperse systems, industrially used
polymers are broadly distributed in MW, It is
therefore conceivable that difficulties in applying
the molecular theory to predicting rheological
properties or to computationally simulating poly-
mer processing are mainly attributed to the effect
of polydispersity on viscoelasticity.

Binary mixture(or blend) of two monodisperse
homopolymes with different MW's is the simplest
model system for examining the MWD effect.
Very recently, a blending law for the relaxation
spectrum Hyg( 7 ) of the binary blend has been
extensively studied by various authors on the
basis of the tube model."' ™" The blending law
in the form of Hg( 7 ) can be the basis for linear
viscoelasticity and verifys relaxation time dis-
tribution.'® But, nonlinear rheological properties
important in processing cannot be determined
from it. In addition, such a law inevitably pos-
sesses too many shift factors, intensity factors
and cross terms to be decided empirically. There-
fore, a blending law for stress equation need to
be established in order to predict both linear
and nonlinear viscoelastic responses of polymer
to mechanical deformation,

In this study, we propose a modified tube model
to obtain the longest relaxation time of blend
components in the light of the significance of
the constraint release mechanism in blended system,
A stress equation for binary blends is also for—
mulated, including the stress attributed to rep-
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tation, constraint release, contour length fluc—
tuation and short-time relaxation processes. The
proposed blending laws are then tested by av-
ailable literature data. The system under con-
sideration is a binary blend in liquid state com-
posed of two components with the MW M, and
M, both of which are sufficiently greater than
the MW between two entanglement points, M, :
ie, My>Mp>>M,,

THEORY

Tube Model for Monodisperse Polymers

In advance to discussing binary blend cases,
we need tn mention the major results of tube
model theories for monodisperse polymers, The
original tube model theory dealt with chain en-
tanglement as an intermolecular interaction and
its relaxation by the reptational diffusion of a
polymer molecule. Doi and Edwards predicted
that the disengagement time 7 [ required for a
chain to completely disengage out of its original
tube by pure reptation at equilibrium should be
equal to the longest relaxation time in a me-
chanically deformed state, Then the longest re-

laxation time is given as'?
r =L/ 7 D=KM?*/M, (1)

where L is the contour length of a tube or its
primitive path(center line of the tube)and D
is the curvilinear diffusion coefficient of the prim-—
itive chain. The proportionality constant K at
a temperature T is related to molecular struc—
ture and the friction coefficient of chain segment,
and is independent of concentration and MW,
Their theory then yields a stress equation in rep-
tational regime : ?

o (t)=3nkT(L/a) Q(E) F(t:74) (2)
with

<IE-W(E-W) s /o |Bul >
|E ‘ul

Q(E)=

(3)

and
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F(t:7)= T 8exp(-p’t/7)/p’x® (4)

p.odd

where o is the extra (deviatoric) stress tensor,
E the deformation gradient tensor, n the number
of chains per unit volume, k the Boltzmann con-
stant , a the average distance between two en-
tanglement points (or“slip-links”), and{:-:>, de-
notes an average over the isotropic unit vector
u,

Including contour length filctuation (Process-F),
the Rouse relaxation between two slip-links (Pro-
cess-A) and the equilibration of segment density
along chain contour(Process-B), additional ver—
sions of the tube model can be summarized in

an explicit form : 59

o (t)=3nkT(L/a) Q(E) my(t) mp(t) mc(t)
(5)

Here, mc(t) is the relaxation function due to
the simultaneously and independently occurring
reptation and the Process—F, whose characteristic
relaxation times are Ty and Ty, respectively :

me(t)=F(t : Tg)/VN+(1-1 //N) F(t ;: Tq)(6)
with

T,=KM3(1-1 //N)*/M, and Tp=KM?/3 (7)

where N(=M/M,) is the number of the prim—
itive steps per chain with(N-1) slip-links. The
function mg(t) is reduced to the time dependent
one in a linear deformation region :

mg(t)=1+exp(-t/Tg)/4 (8)

where the characteristic time for the process-B,
Tg, is equal to Ty according to Doi® and Thirion
and Tassin® while Lin’ argues Tg=~KM?/N. The
characteristic time T, for the fast Process-A is
approximated to be KM,?/6 (o<Ty/N?), and m4(t)
=1 for t>T,. As Ty>Tr=Ts>>T,, both my
(t) and mg(t) of eq. (5) become unity of t>
Tg. It is notable that eq. (5) does not in-
corporate the contribution 'of constraint release,
whose effect on chain relaxation is not significant
in purely monodisperse polymers.a'4
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The Relaxation Times of Component Chains

It is conceivable that the three relaxation pro-
cesses, Process—A, -B and -F, of a singled out
chain(“model chain”) are attributed to intramo-
lecular chain dynamics and thus are not affected
by the MWD of its surrounding tube—forming
chains. In the sense that every chain in a poly-
mer diffuses by reptational motion in a self-
consistent manner, topological constraints imposed
by tube-forming chains upon a model chain are
not fixed ones and can be released in parallel
with local tube renewal ** We now visualize that
the polydispersity affects chain realxation mainly
through the constraint release mechainsm, On
the other hand, we assume that the mechanism
can be neglected in pure monodisperse state, as
Graessley pointed out’ Thus, the longest re-

laxation time Taq’of a blend component chain
in pure state is expressed by eq. (7)if reptation
and the Process-F occur simultaneously and ind
ependent :

Td=KM? (1-1//N;)*/M, (i=1 or 2)  (9)
with

N;=M;/M, (10)

Let T4 and Ty, be the longest relaxation times
of the low MW chain (“l1-chain”) and the high
MW chain(“2—chain”) in a binary blend, re-
spectively. Then, Ty, and Ty, are expected to
be related to T4}, T4 the entanglement spacing

M,, the compontnt MW, and the weight
fraction of the high MW component w, :
To=f(Ty, Te3 M., My, My, wy) (11)

If a 1-chain is
selected as a model chain, it is subjected to two
types of constraints:the 1-1 and 1-2 en-

Relaxation of the 1-chain

tanglements with its surrounding 1-chain and
2—chain, respectively, These constraints are not
changed at least until t=T,, the average lifetime
of the 1-1 entanglement ;ie., at every T, it
changes its location(or jumps). According to ear-
lier derivations of the T, required for such local
jump in monodisperse polymers,“'5 T, for the
current binary blend is nearly equal to Ty :
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Fig. 1. : Schematic illustration of the relaxation pro-
cess of the high MW chain, (a) Straightened
original tube. (b) Primitive chain and tube
at T, : filled and unfilled circles denote the
type-2 and -1 sliplinks, respectively, (¢) Eq-
uivalent primitive chain(thick line), eq-

uivalent fixed slip—links (filled circles), and

equivalent survived tube (thin line), (d) Com-
pleted disengagement of the equivalent chain,

Tc1=( 7(2/12) Td?sz? (12)

Therefore, constraint release affects the 1—chain’
s relaxation little, and pure reptation is the do-
minating mechanism :

Ta=Td (13)

Relaxation Process of the 2-—chain First we
consider a case where the MW difference between
two components is very large, M;/M, —0. The
high MW 2-—chain selected as a model chain re-
the model
chain reptates back and forth along its contour
so that the original tube (broken line of Fig.

laxes by pure reptation for t<T,, :

l-a) “evaporates” at its both ends(dotted area
of Fig. 1-b) due to random directions chosen
by the chain ends. The contour length of the
survived tube at T, (=Ty ) except for the
evaporated part is®

Ly(Tg)=L; exp(-Tq/Tg3 ) (14)

where Lj is the average contour length of the
2—chain or the original tube at equilibrium. Due
to the reptational diffusion of a tube-forming
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1—hain, a 2-1 entanglement (“type-1” slip-link)
renews its location and its corresponding tube
segment is rearranged locally (Fig. 1-b). Such
a local jump of the type-1 slip-link occurs at
every Ty, while each 2-2 entanglement (“type-2”
slip-link) keeps its original location until either
end of the model chain passes through it. There-
fore , the survived tube part at Ty, is separated
into two sections : one maintaining original con-
formation and the other experiencing periodical
local tube renewal.

Let the type-1 and 2 slip-links be distributed
uniformly along the chain. Considering T4i is much
smaller than T4} by the ratio (M;/M,)* and that
the orientations of periodically fluctuating
primitive steps are isotropic, we are led to envisage
the model chain as a homogenized “equivalent
primitive chain” constrained effectively until Ty,
only by some imaginary slip-links which are equally
spaced by the distance a;. we call them the
“equivalent fixed slip-links”, For blends with
M,;/M;y—0, they correspond to the type-2 slip-
links., Then, the isotropically fluctuating steps
are assumed to be uniformly distributed over
the equivalent chain and to behave like parts
of wriggling Gaussian submolecules between two
successive equivalent slip-links. The survived tube
at Ty, is also remodeled by an equivalent one
with original conformation (thin line of fig.1-c)
the diameter of which is comparable to a;,. With
these treatments we can predict that Ty, should
be equal to the time when the equivalent chain
completely disengages by pure reptation out of
the equivalent survived tube (Fig. 1-c and -d).
The existence of neighboring short 1—chain would
then affect the parameters for the equivalent
chain and tube.

Now, in order to derive the residual dis-
engagement time, Ty,-Ty4,, parameters for the
equivalent 2—chain should be obtained. The av-
erage MW between two equivalent slip-links,

M,,, can be deduced from the relation'*'*

¢“M.=constant (15)

where ¢ is the polymer mass per unit volume,
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and the index a is unity for melts and highly
concentrated solutions. The M,; is then related
to M, and w; as

Me/M=(c/cy) " =w; * (16)

where v is equal to a if M;/My— 0 when 1-
chains behave like solvent molecules against the
2—chain, Thus the contour length Ly’ (Tg;) of the
equivalent residual dis-
engagement of the remodeled reptating chain is

survived tube for

Ly (Ta)=w; "*Lo(Ta1) (17)
Then, the definition in eq. (1)enables us to write
Tao-Ta=Ly?/ 77Dy (18)

where the coefficient D, is remained constant
throughout the whole disengagement process on
the basis of the Einstein relation*® Substituting
eqs. (13) and (17) into eq. (18), we get

Ty=Td+ w;" Ts exp(-2T41/Tq2’) (19)

Let us now extend above discussions to another
extreme case of M;/M;y—1. In this case M., must
tend to M.. Thus, eq.(19) can be generalized
to be used for blends with arbitrary M;/M, ra-
tios if the index » is expressed as a function
of the MW ratio, We do not know the functional
form of v (M;/M,) at this stage. If we simply
take the first—order approximation for the MW
ratio dependence, that function should be ex-
pressed as

v=a{1-(M/My)}  0<M,/M,<1 (20)

in order to satisfy two limiting conditions @ v
—a for M;/M;—0 and Mg=M.(or v =0) for
M,—M,. Then, egs. (19) and (20) can be used
for blends with intermediate MW ratio.

So far, we have mentioned the relaxation pro-
cess where the two component chains entangle
with each other at least once, However, we can
imagin two critical contents : one is w, where
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each 2-chain entangles the 1-—chain only once
on average ; the other is w.” where M, from
eq.(16) is nearly equal to M,/2, corresponding
to the onset of entanglement among 2-chains,
Thus, strictly speaking, eq. (19) is valid for a
content range w,” <wy=w,.. The critical contents
can be expressed in terms of N;(=M;/M,) as

, N-1

= 1 and w.=(2/Np)"” (21
w, N1 (NN and w. '=(2/Nz) " (21)

Considering N; and N;>>1, we need to note
that w., and w,” are nearly equal to 1 and 0,
respectively,

Although we have considered the relaxation
process at equilibrium to estimate the Ty, it
is notable that there exists an equilibration stage
for uniform segment density along contour(the
Process—B) immediately after an instantaneous
deformation. Putting Ty be the time when the
equivalent chain model begins to be applied,fol-
lowing two cases are conceivable :

Ta if Taa>Ts

T =
0 {TB if Tu=Ts

(22)
Finally, the general expression for the Ty issum-
marized as

Tao(wy)=

To(w.") for O<wo=w,”
To+wy T exp(-2T4}/T43)

for w,” <wy=w/
Ty or Tg(w.) for w; <wy=1

(23)

Blending Laws

Following the single chain approximation of
Doi and Edwards’ that every molecule contributes
independently to stress, the respective con-
tribution of blend components sums to the total

stress of binary blends :
o g(t)=0,(t)+ o,(t) (24)

where o;(t) is estimate by eq.(5). Since eq.(5)
does not incorporate effects due to constraint
release mechanism, we have to modify the second
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term of eq.(6). Let us consider the terminal time
regime corresponding to the term. The 1-chain
relaxes by reptation alone and

Fi(t)=F(t : T4) (25)

On the other hand, in case of the 2-chain, we
have to consider two time regions separately as
discussed in the previous section., At first, it
relaxes by pure reptation :

Fa(t)=F(t : T43) for 0=t=T, (26)

After t=T,, the concurrence of reptation and
local constraint release leads us to apply the
equivalent primitive chain model :

Fz(t)—_—sz F(t; ng) /ng for t>T, (27)

which means the 2-—chain relaxes in the same
manner as a chain with the MW M, and the
relaxation time Ty (not T4}) does by pure rep-
tation in a monodisperse mean field with the
entanglement spacing M.=M_.Ty,/Td according
to eq.(1). Therefore, the stress equation for bi-
nary blends is expressed as

7 (1) =GoQ(E) S (wim,(t: Ta)msy (¢ : T )m, (L}

(28)
with
Go=3cRT/M,=15G% /4 (29)
and
me,(t)=F(t : Tg,)/ VNi+(1-1//N;) Fi(t)
(30)

where R is the gas constant, and Fi(t) (i=1
and 2) is given by eqs.(25~27),

COMPARISON OF THE THEORY WITH
EXPERIMENTAL DATA

A critical test of the present theory is made
by comparing the theoretical wy—dependences of
the two principal viscoelastic constants, the zero—
shear viscosity ( 7,)g and steady—state shear com-
pliance (J.%)p, with available literature data.
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Theoretical predictions of the constants are
numerically calculated on the basis of the shear
stress relaxation modulus Gg(t) derived from
the stress equation. For a simple shear de-
formation with a small step strain 7y, eqs.(3)
and (28) yield

Qu(E)=4y /15 (31)

CIB(t ) :}/i?o

9 yx(t) (32)
Y

(7,)s=lim w .7GB(S) cos( ws) ds

w—a

=lm G(w)/w (33)

w0

(J0)p =lim @ | Ga(s) sin (ws) i

C'J( 770)}32

w—0 o

=lim Gp(w)/Gp (w)® (34)

@ —>0

A computer program calculating the storage and
loss moduli Gg'(w) and Gg’(w) was prepared
to estimate (7¢)g and (J.)g. This is a mere
accurate and efficient way than a direct nu-
merical Fourier transformation of calculated val-
ues of Gg(t) whose calculation extends over sev-
veral decades of times. The infinite integrations
in eqs.(33) and (34) are separated into two time
regions : 0=t=T, and T,<t<oo,

Fig.2 compares our theory (solid curves) with
data(circles) on the binary blends of linear,nar-
rowly distributed polybutadiene15 with a large
blend ratio M,;/M;=10.7. The solid lines are ca-
leulated by eqs. (33) and (34) with T4 cal-
culated from the data of (7,)p at wy=0 and
1, and the plateau modulus Gy°=1.2X10" dyne/
ci and Me=1,880.“ For comparison purposes,
the predicted curve for (J.’)g is fit to coincide
with the data at wy,=1. In the same manner,
the comparison for polystyrene blends'® (G\°'=
2X 106dyne/cm’ ; Me=13,000)7 with a small blend
ratio (My/M;=2) is shown in Fig3.

Blending laws for Hg( 7 ) proposed by others
on the basis of the tube model are also compared
in the figures : dashed lines denote the predictions
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Fig.2.: (a) Zero-shear viscosity {(7,)g vs. com-
position w, for binary blends of undiluted,
narrowly distributed polybutadienes with M,
/M;=4.35X10°/4,07x10*at 25°C, Data(circles)
by struglinski. (b) Steady-state shear com-
pliance (J2%)g vs. w;. solid lines by the pr-
esent theory. see the text for captions for
the other lines.

of Kurata's law ; 2 dash—dot lines by Watanabe
and Kotaka™ for My/M,; > 8 and at w > 0.4;

and dotted lines by Watanabe et al'* for M,/
M, < 2 or by Doi and Edwards* law” irrespective
of the blend ratio. The figures show that our
theory is in good accord with experimental results,
while other laws do not agree with each other
and reveal some discrepancies with data, Al-
though not included here further, our laws also
describes well other data for blends with in-
termediate blend ratio between 10,7 and 2.
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Fig3.: (a)(#7,)s vs. wy; for binary blends of po-
lystyrenes with M,;/M;=2,67Xx10°/1,25X10
5 at 129°C. Data by Akovali'® (b)(J2)p vs.
w,. Others are the same as the captions to
Fig.2.

CONCLUSIONS

We proposed a modified tube model which
provides us a background to predict viscoelastic
properties of binary blends of linear homo-
polymers with different MW*s, Based on our pro-
posed equivalent primitive chain model, we de-
rived a blending law for the stress equation which
incorporates intramolecular chain dynamics as
well as intermolecular interactions. It is expected
that the blending law can yield both linear and
nonlinear rheological properties because the deformation—
dependent function Q(E) of egs. (3) and (28)
is given for any type of deformation or flow and
the algorithm in the Doi-Edwards theory for
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extending the stress equation to a general con-
stitutive equation is still valid in the current
case,

The good agreement of our theory with the
experimental observations of (7,)s and (J°)g,
which are very sensitive to molecular structure
and relaxation time, leads us to extend the cur-
rent theory to polydisperse polymers with known,
arbitrary MWD,
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