Supporting Information

알칸 용매내에서 용매 크기에 따른 블록공중합체 마이셀 구조 연구

이상호, 최수형

서울특별시 마포구 상수동 와우산로 94 홍익대하교 화학공학과

Solvent size-dependent structure of diblock copolymer micelles in *n*-alkanes

Sangho Lee and Soo-Hyung Choi†

Department of Chemical Engineering, Hongik University, Seoul 04066, Republic of Korea.

Corresponding Author: E-mail: <u>shchoi@hongik.ac.kr</u> Tel: (+82) 02-320-1686

Figure S1. (a) ¹H-NMR spectra for SEP-1 and SEP-2. (b) GPC results of SEP-1 and SEP-2. This confirms that both SEP block copolymers are narrowly dispersed in molecular weight.

Figure S2. SAXS profiles for SEP -1 in *n*-alkanes; (a) *n*-hexadecane, (b) *n*-tetradecane, (c) *n*-dodecane, (d) *n*-decane, and (e) *n*-octane. Solid curves represent the best fit to the detailed BCP micelle model. Data are vertically shifted for clarity.

Figure S3. SAXS profiles for SEP-2 in *n*-alkanes; (a) *n*-hexadecane, (b) *n*-tetradecane, (c) *n*-dodecane, (d) *n*-decane, and (e) *n*-octane. Solid curves represent the best fit to the detailed BCP micelle model. Data are vertically shifted for clarity.

Temp. (°C)	Rc (Å)	$N_{ m agg}$	Rhs (Å)	σr (Å)	σ _{int} (Å)	$\eta_{ m hs}$	Temp. (°C)	Rc (Å)	$N_{ m agg}$	R _{hs} (Å)	σr (Å)	σ _{int} (Å)	$\eta_{ m hs}$
]	HD						,	ТD			
40	79	72	436	5	13	0.10	40	79	74	443	4	14	0.09
50	77	67	431	4	14	0.10	50	75	59	424	4	14	0.09
70	73	52	392	4	14	0.08	60	72	51	348	4	14	0.05
80	72	48	309	12	17	0.03	70	58	15	273	13	26	0.06
90	63	21	233	7	27	0.03							
Temp.	Rc	Naga	Rhs	σR	$\sigma_{ m int}$	Nha	Temp.	<i>R</i> _c	Nag	R _{hs}	$\sigma_{ m R}$	$\sigma_{ m int}$	Nha
Temp. (°C)	<i>R</i> c (Å)	$N_{ m agg}$	R _{hs} (Å)	σ _R (Å)	σ _{int} (Å)	$\eta_{ m hs}$	Temp. (°C)	<i>R</i> c (Å)	$N_{ m agg}$	R _{hs} (Å)	σ _R (Å)	σ _{int} (Å)	η̈́hs
Temp. (°C)	<i>R</i> c (Å)	$N_{ m agg}$	R _{hs} (Å) DD	σ _R (Å)	σ _{int} (Å)	η'ns	Temp. (°C)	<i>R</i> c (Å)	N _{agg}	R _{hs} (Å) DE	σ _R (Å)	σ _{int} (Å)	η _{hs}
Temp. (°C) 40	<i>R</i> c (Å) 75	N _{agg}	R _{hs} (Å) DD 425	σ _R (Å) 4	σ _{int} (Å) 15	η _{hs}	Temp. (°C) 40	R c (Å) 71	N _{agg} 50	R _{hs} (Å) DE 400	σ _R (Å) 4	σ _{int} (Å) 16	η _{hs}
Temp. (°C) 40 50	R c (Å) 75 72	N _{agg} 61 51	R _{hs} (Å) DD 425 394	σ _R (Å) 4	σ _{int} (Å) 15	η _{hs} 0.07 0.06	Temp. (°C) 40 50	R c (Å) 71 69	N _{agg} 50 42	Rhs (Å) DE 400 358	σ _R (Å) 4	σ _{int} (Å) 16	η _{hs} 0.03 0.02
Temp. (°C) 40 50 60	R c (Å) 75 72 72	N _{agg} 61 51 51	R _{hs} (Å) DD 425 394 348	σ _R (Å) 4 4 4	σ _{int} (Å) 15 15	η _{hs} 0.07 0.06 0.05	Temp. (°C) 40 50 55	R c (Å) 71 69 62	N _{agg} 50 42 28	Rhs (Å) DE 400 358 325	σ _R (Å) 4 4	σ _{int} (Å) 16 15 23	η _{hs} 0.03 0.02 0.03
Temp. (°C) 40 50 60 70	Rc (Å) 75 72 72 52	N _{agg} 61 51 51	R _{hs} (Å) DD 425 394 348 208	σ _R (Å) 4 4 4 4	σ _{int} (Å) 15 15 14 30	η _{hs} 0.07 0.06 0.05 0.03	Temp. (°C) 40 50 55 60	R c (Å) 71 69 62 70	N _{agg} 50 42 28 46	Rhs (Å) DE 400 358 325 322	σ _R (Å) 4 4 18 7	σ _{int} (Å) 16 15 23 16	η _{hs} 0.03 0.02 0.03 0.03

Table S1. SAXS fitting results of SEP-1 in *n*-alkanes.

Temp. (°C)	<i>R</i> c (Å)	$N_{ m agg}$	Rhs (Å)	σr (Å)	σint (Å)	$\eta_{ m hs}$
			OC			
40	68	43	334	5	17	0.06
50	64	32	255	5	22	0.03
55	58	13	224	22	28	0.07

Temp. (°C)	Rc (Å)	$N_{ m agg}$	Rhs (Å)	σr (Å)	σ _{int} (Å)	$\eta_{ m hs}$	Temp. (°C)	Rc (Å)	$N_{ m agg}$	Rhs (Å)	σr (Å)	σ _{int} (Å)	$\eta_{ m hs}$
			HD						1	TD			
40	90	73	428	5	13	0.13	40	91	75	443	3	15	0.11
50	90	72	425	6	14	0.11	50	90	70	425	8	13	0.09
70	91	69	427	7	15	0.12	70	94	73	438	8	13	0.09
80	91	66	420	7	15	0.12	80	89	61	414	8	15	0.10
100	86	45	375	10	14	0.10	100	81	32	299	9	17	0.05
120	61	14	226	18	33	0.06	110	57	9	245	39	36	0.15
Temn.	Rc		Rhs	σr	Tint		Temn.	Rc		Rhs	σR	Tint	
(°C)	(Å)	$N_{ m agg}$	(Å)	(Å)	(Å)	$\eta_{ m hs}$	(°C)	(Å)	$N_{ m agg}$	(Å)	(Å)	(Å)	$\eta_{ m hs}$
			DD							DE			
40	95	88	456	3	14	0.11	40	98	93	470	4	14	0.11
50	91	71	431	7	14	0.12	50	92	72	429	8	15	0.13
70	89	62	416	8	14	0.12	70	86	49	395	9	13	0.13
80	82	42	394	5	16	0.15	80	79	35	334	8	19	0.10
100	68	16	240	26	28	0.06	90	69	18	259	37	30	0.08
Tomn	Ra		Rhs	σR	Tint								

Table S2. SAXS fitting results of SEP-2 in *n*-alkanes.

Temp. (°C)	Rc (Å)	$N_{ m agg}$	Rhs (Å)	σr (Å)	σ _{int} (Å)	$\eta_{ m hs}$
			OC			
40	99	97	462	8	11	0.08
50	91	70	419	9	15	0.13
70	83	39	333	9	13	0.11
80	72	17	193	35	34	0.11

Figure S4. Zimm-plot obtained from SEP-2 in *n*-hexadecane at room temperature.