• Poly(ethylene glycol)-Keratin Hydrogels Prepared via Thiol-Maleimide Reaction
  • Damla Yalçın and Ayben Top

  • Department of Chemical Engineering, İzmir Institute of Technology, Urla, İzmir, 35430, Türkiye

  • Thiol-Maleimide 반응을 이용한 Poly(ethylene glycol)-케라틴 하이드로젤 연구
  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Stowers, R. S. Advances in Extracellular Matrix-mimetic Hydrogels to Guide Stem Cell Fate. Cells Tissues Organs 2022, 211, 703-720.
  •  
  • 2. Murphy, N. P.; Lampe, K. J. Mimicking Biological Phenomena in Hydrogel-based Biomaterials to Promote Dynamic Cellular Responses. J. Mater. Chem. B 2015, 3, 7867-7880.
  •  
  • 3. Yang, F.; Williams, C. G.; Wang, D.; Lee, H.; Manson, P. N.; Elisseeff, J. The Effect of Incorporating RGD Adhesive Peptide in Polyethylene Glycol Diacrylate Hydrogel on Osteogenesis of Bone Marrow Stromal Cells. Biomaterials 2005, 26, 5991-5998.
  •  
  • 4. González-Pérez, F.; Alonso, M.; Torre, I.; Santos, M.; Rodríguez-Cabello, J. Laminin-Derived Peptide Sequences Within Elastin-Like Recombinamer Scaffolds Provide Spatiotemporally Synchronized Guidance of Angiogenesis and Neurogenesis. Adv. Healthc. Mater 2022, 11, 2201646.
  •  
  • 5. Perera, T. H.; Lu, X.; Smith Callahan, L. A. Effect of Laminin Derived Peptides IKVAV and LRE Tethered to Hyaluronic Acid on HiPSC Derived Neural Stem Cell Morphology, Attachment and Neurite Extension. J. Funct. Biomater. 2020, 11, 15.
  •  
  • 6. Wei, X.; Chen, S.; Xie, T.; Chen, H.; Jin, X.; Yang, J.; Sahar, S.; Huang, H.; Zhu, S.; Liu, N. An MMP-degradable and Conductive Hydrogel to Stabilize HIF-1α for Recovering Cardiac Functions. Theranostics 2022, 12, 127.
  •  
  • 7. Charrier, E. E.; Pogoda, K.; Wells, R. G.; Janmey, P. A. Control of Cell Morphology and Differentiation by Substrates with Independently Tunable Elasticity and Viscous Dissipation. Nat. Commun. 2018, 9, 449.
  •  
  • 8. Chester, D.; Lee, V.; Wagner, P.; Nordberg, M.; Fisher, M. B.; Brown, A. C. Elucidating the Combinatorial Effect of Substrate Stiffness and Surface Viscoelasticity on Cellular Phenotype. J. Biomed. Mater. Res. A 2022, 110, 1224-1237.
  •  
  • 9. Fan, Y.; Sun, Q.; Li, X.; Feng, J.; Ao, Z.; Li, X.; Wang, J. Substrate Stiffness Modulates the Growth, Phenotype, and Chemoresistance of Ovarian Cancer Cells. Front. Cell Dev. Biol. 2021, 9, 718834.
  •  
  • 10. Lu, C.; Zheng, J.; Yoshitomi, T.; Kawazoe, N.; Yang, Y.; Chen, G. How Hydrogel Stiffness Affects Adipogenic Differentiation of Mesenchymal Stem Cells under Controlled Morphology. ACS Appl. Bio Mater. 2023, 6, 3441-3450.
  •  
  • 11. Nguyen, D. H.; Utama, R. H.; Tjandra, K. C.; Suwannakot, P.; Du, E. Y.; Kavallaris, M.; Tilley, R. D.; Gooding, J. J. Tuning the Mechanical Properties of Multiarm RAFT-Based Block Copolyelectrolyte Hydrogels via Ionic Cross-Linking for 3D Cell Cultures. Biomacromolecules 2022, 24, 57-68.
  •  
  • 12. Guaresti, O.; Basasoro, S.; González, K.; Eceiza, A.; Gabilondo, N. In situ Cross–linked Chitosan Hydrogels via Michael Addition Reaction Based on Water–soluble Thiol–maleimide Precursors. Eur. Polym. J. 2019, 119, 376-384.
  •  
  • 13. Moon, N. G.; Pekkanen, A. M.; Long, T. E.; Showalter, T. N.; Libby, B. Thiol-Michael ‘click’ Hydrogels as an Imageable Packing Material for Cancer Therapy. Polymer 2017, 125, 66-75.
  •  
  • 14. Hebner, T. S.; Kirkpatrick, B. E.; Fairbanks, B. D.; Bowman, C. N.; Anseth, K. S.; Benoit, D. S. Radical-Mediated Degradation of Thiol–Maleimide Hydrogels. Adv. Sci. 2024, 2402191.
  •  
  • 15. Jansen, L. E.; Negrón-Piñeiro, L. J.; Galarza, S.; Peyton, S. R. Control of Thiol-maleimide Reaction Kinetics in PEG Hydrogel Networks. Acta Biomater. 2018, 70, 120-128.
  •  
  • 16. Altinbasak, I.; Kocak, S.; Sanyal, R.; Sanyal, A. Fast-Forming Dissolvable Redox-Responsive Hydrogels: Exploiting the Orthogonality of Thiol–Maleimide and Thiol–Disulfide Exchange Chemistry. Biomacromolecules 2022, 23, 3525-3534.
  •  
  • 17. Kharkar, P. M.; Kiick, K. L.; Kloxin, A. M. Design of Thiol-and Light-sensitive Degradable Hydrogels Using Michael-type Addition Reactions. Polym. Chem. 2015, 6, 5565-5574.
  •  
  • 18. Pupkaite, J.; Rosenquist, J.; Hilborn, J.; Samanta, A. Injectable Shape-holding Collagen Hydrogel for Cell Encapsulation and Delivery Cross-linked Using Thiol-michael Addition Click Reaction. Biomacromolecules 2019, 20, 3475-3484.
  •  
  • 19. García, A. J. PEG–maleimide Hydrogels for Protein and Cell Delivery in Regenerative Medicine. Ann. Biomed. Eng. 2014, 42, 312-322.
  •  
  • 20. Sarma, A. Biological Importance and Pharmaceutical Significance of Keratin: A Review. Int. J. Biol. Macromol. 2022, 219, 395-413.
  •  
  • 21. Lazarus, B. S.; Chadha, C.; Velasco-Hogan, A.; Barbosa, J. D.; Jasiuk, I.; Meyers, M. A. Engineering with Keratin: A Functional Material and a Source of Bioinspiration. iScience 2021, 24.
  •  
  • 22. Wang, X.; Shi, Z.; Zhao, Q.; Yun, Y. Study on the Structure and Properties of Biofunctional Keratin from Rabbit Hair. Materials 2021, 14, 379.
  •  
  • 23. Giteru, S. G.; Ramsey, D. H.; Hou, Y.; Cong, L.; Mohan, A.; Bekhit, A. E. D. A. Wool Keratin as a Novel Alternative Protein: A Comprehensive Review of Extraction, Purification, Nutrition, Safety, and Food Applications. Compr. Rev. Food Sci. Food Saf. 2023, 22, 643-687.
  •  
  • 24. Silva, R.; Singh, R.; Sarker, B.; Papageorgiou, D. G.; Juhasz, J. A.; Roether, J. A.; Cicha, I.; Kaschta, J.; Schubert, D. W.; Chrissafis, K. Hybrid Hydrogels Based on Keratin and Alginate for Tissue Engineering. J. Mater. Chem. B 2014, 2, 5441-5451.
  •  
  • 25. Tachibana, A.; Furuta, Y.; Takeshima, H.; Tanabe, T.; Yamauchi, K. Fabrication of Wool Keratin Sponge Scaffolds for Long-term Cell Cultivation. J. Biotechnol. 2002, 93, 165-170.
  •  
  • 26. Pakkaner, E.; Yalçın, D.; Uysal, B.; Top, A. Self-assembly Behavior of the Keratose Proteins Extracted from Oxidized Ovis Aries Wool Fibers. Int. J. Biol. Macromol. 2019, 125, 1008-1015.
  •  
  • 27. Yalçın, D.; Top, A. Novel Biopolymer-based Hydrogels Obtained Through Crosslinking of Keratose Proteins Using Tetrakis (hydroxymethyl) Phosphonium Chloride. Iran. Polym. J. 2022, 31, 1057-1067.
  •  
  • 28. Yue, K.; Liu, Y.; Byambaa, B.; Singh, V.; Liu, W.; Li, X.; Sun, Y.; Zhang, Y. S.; Tamayol, A.; Zhang, P. Visible Light Crosslinkable Human Hair Keratin Hydrogels. Bioeng. Transl. Med. 2018, 3, 37-48.
  •  
  • 29. Riddles, P. W.; Blakeley, R. L.; Zerner, B. Reassessment of Ellman's Reagent. In Methods in Enzymology, C. H. W. Hirs; Timasheff, S. N., Eds. Academic Press: New York, 1983, 91, 49-60.
  •  
  • 30. Aitken, A.; Learmonth, M. Estimation of Disulfide Bonds Using Ellman’s Reagent. In The Protein Protocols Handbook, Walker, J. M., Ed. Humana Press: Totowa, NJ, 2009; 1053-1055.
  •  
  • 31. Chen, M. H.; Wang, L. L.; Chung, J. J.; Kim, Y. H.; Atluri, P.; Burdick, J. A. Methods to Assess Shear-thinning Hydrogels for Application as Injectable Biomaterials. ACS Biomater. Sci. Eng. 2017, 3, 3146-3160.
  •  
  • 32. Kim, B.; Kim, J. PEGylated Hybrid Hydrogels with Tunable Swelling Property and Biodegradability. Polym. Korea 2021, 45, 171-177.
  •  
  • 33. Ozbas, B.; Kretsinger, J.; Rajagopal, K.; Schneider, J. P.; Pochan, D. J. Salt-triggered Peptide Folding and Consequent Self-assembly Into Hydrogels with Tunable Modulus. Macromolecules 2004, 37, 7331-7337.
  •  
  • 34. Karvinen, J.; Ihalainen, T. O.; Calejo, M. T.; Jönkkäri, I.; Kellomäki, M. Characterization of the Microstructure of Hydrazone Crosslinked Polysaccharide-based Hydrogels Through Rheological and Diffusion Studies. Mater. Sci. Eng. C 2019, 94, 1056-1066.
  •  
  • 35. Gu, S.; Cheng, G.; Yang, T.; Ren, X.; Gao, G. Mechanical and Rheological Behavior of Hybrid Cross-linked Polyacrylamide/Cationic Micelle Hydrogels. Macromol. Mater. Eng. 2017, 302, 1700402.
  •  
  • 36. Feng, W.; Wang, Z. Tailoring the Swelling-Shrinkable Behavior of Hydrogels for Biomedical Applications. Adv. Sci. 2023, 10, 2303326.
  •  
  • 37. Hoti, G.; Caldera, F.; Cecone, C.; Rubin Pedrazzo, A.; Anceschi, A.; Appleton, S. L.; Khazaei Monfared, Y.; Trotta, F. Effect of the Cross-linking Density on the Swelling and Rheological Behavior of Ester-bridged β-cyclodextrin Nanosponges. Materials 2021, 14, 478.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2025; 49(2): 163-169

    Published online Mar 25, 2025

  • 10.7317/pk.2025.49.2.163
  • Received on Jun 19, 2024
  • Revised on Sep 30, 2024
  • Accepted on Nov 10, 2024

Correspondence to

  • Ayben Top
  • Department of Chemical Engineering, İzmir Institute of Technology, Urla, İzmir, 35430, Türkiye

  • E-mail: aybentop@iyte.edu.tr