• Synthesis of Cationic Polymer Dots for Perrhenate Anion Detection in Aqueous Solutions
  • Hyeran Gim and Byunghwan Lee

  • Department of Chemical Engineering, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 42601, Korea

  • 수용액에서 퍼리네이트 음이온 검출을 위한 양이온성 고분자 점 제조
  • 김혜란 ∙ 이병환

  • 계명대학교 공과대학 화학공학과

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Suh, M. Y.; Lee, C. H.; Han, S. H.; Park, Y. J.; Lee, K. Y.; Kim, W. H. Extraction Chromatographic Separation of Technetium-99 from Spent Nuclear Fuels for Its Determination by Inductively Coupled Plasma-Mass Spectrometry. Anal. Sci. Technol. 2004, 17, 438-442.
  •  
  • 2. Chan, W. N.; Warren, J. P.; Krieger, S. P.; Vestal, B. L.; Harrison, R. G. Separation and Preconcentration of Perrhenate from Ionic Solutions by Ion Exchange Chromatography. J. Chromatogr. A 2020, 1631, 461588-461593.
  •  
  • 3. Katayev, E. A.; Kolesnikov, G. V.; Sessler, J. L. Molecular Recognition of Pertechnetate and Perrhenate. Chem. Soc. Rev. 2009, 38, 1572-1586.
  •  
  • 4. Pandey, S. P.; Desai, A. M.; Singh, P. K. A Highly Sensitive Fluorescence “Turn On” Detection of Perrhenate Anion, a Non-Radioactive Surrogate of Hazardous Pertechnetate Anion. Sens. Actuators, B. 2020, 323, 128675-128682.
  •  
  • 5. Li, C. P.; Zhou, H.; Chen, J.; Wang, J. J.; Du, M.; Zhou, W. A Highly Efficient Coordination Polymer for Selective Trapping and Sensing of Perrhenate/Pertechnetate. ACS Appl. Mater. Interfaces 2020, 12, 15246-15254.
  •  
  • 6. Singh, G.; Pandey, S. P.; Singh, P. K. A Dual Intensity and Lifetime Based Fluorescence Sensor for Perrhenate Anion. Sens. Actuators, B. 2021, 330, 129346-129354.
  •  
  • 7. Melton, L. M.; Taylor, M. J.; Flynn, E. E. The Utilisation of Ion Chromatography and Tandem Mass Spectrometry (IC-MS/MS) for the Multi-Residue Simultaneous Determination of Highly Polar Anionic Pesticides in Fruit and Vegetables. Food Chem. 2019, 298, 125028-125035.
  •  
  • 8. Saari-Nordhaus, R.; Anderson Jr., J. M. Recent Advances in Ion Chromatography Suppressor Improve Anion Separation and Detection. J. Chromatogr. A 2002, 956, 15-22.
  •  
  • 9. López-Ruiz, B. Advances in the Determination of Inorganic Anions by Ion Chromatography. J. Chromatogr. A 2000, 881, 607-627.
  •  
  • 10. Colon, M.; Todoli, J. L.; Hidalgo, M.; Iglesias, M. Development of Novel and Sensitive Methods for the Determination of Sulfide in Aqueous Samples by Hydrogen Sulfide Generation-Inductively Coupled Plasma-Atomic Emission Spectroscopy. Anal. Chim. Acta 2008, 609, 160-168.
  •  
  • 11. Zhang, H. Y.; Wang, Y.; Xiao, S.; Wang, H.; Wang, J. H.; Feng, L. Rapid Detection of Cr (VI) Ions Based on Cobalt (II)-Doped Carbon Dots. Biosens. Bioelectron. 2017, 87, 46-52.
  •  
  • 12. Lou, X.; Ou, D.; Li, Q.; Li, Z. An Indirect Approach for Anion Detection: the Displacement Strategy and Its Application. Chem. Commun. 2012, 48, 8462-8477.
  •  
  • 13. Saha, K.; Agasti, S. S.; Kim, C.; Li, X.; Rotello, V. M. Gold Nanoparticles in Chemical and Biological Sensing. Chem. Rev. 2012, 112, 2739-2779.
  •  
  • 14. Liu, Y.; Huang, H.; Cao, W.; Mao, B.; Liu, Y.; Kang, Z. Advances in Carbon Dots: from the Perspective of Traditional Quantum Dots. Mat. Chem. Front. 2020, 4, 1586-1613.
  •  
  • 15. Yuan, F.; Li, S.; Fan, Z.; Meng, X.; Fan, L.; Yang, S. Shining Carbon Dots: Synthesis and Biomedical and Optoelectronic Applications. Nano Today 2016, 11, 565-586.
  •  
  • 16. Bacon, M.; Bradley, S. J.; Nann, T. Graphene Quantum Dots. Part. Part. Syst. Charact. 2014, 31, 415-428.
  •  
  • 17. Yan, F.; Sun, Z.; Zhang, H.; Sun, X.; Jiang, Y.; Bai, Z. The Fluorescence Mechanism of Carbon Dots, and Methods for Tuning Their Emission Color: A Review. Microchim. Acta 2019, 186, 583-619.
  •  
  • 18. Mansuriya, B. D.; Altintas, Z. Carbon Dots: Classification, Properties, Synthesis, Characterization, and Applications in Health Care – An Updated Review (2018–2021). Nanomaterials 2021, 11, 2525-2579.
  •  
  • 19. Zhu, S.; Song, Y.; Zhao, X.; Shao, J.; Zhang, J.; Yang, B. The Photoluminescence Mechanism in Carbon Dots (Graphene Quantum Dots, Carbon Nanodots, and Polymer Dots): Current State and Future Perspective. Nano Res. 2015, 8, 355-381.
  •  
  • 20. Langer, M.; Paloncýová, M.; Medveď, M.; Pykal, M.; Nachtigallová, D.; Shi, B.; Otyepka, M. Progress and Challenges in Understanding of Photoluminescence Properties of Carbon Dots Based on Theoretical Computations. Appl. Mater. Today 2021, 22, 100924-100951.
  •  
  • 21. Kwon, B.; Jeong, G.; Jeong, W.; Park, J.; Chae, A.; In, I. Recent Trends in Synthesis and Application of Carbon Quantum Dots. Polymer Sci. Technol. 2018, 29, 297-303.
  •  
  • 22. Tian, P.; Tang, L.; Teng, K. S.; Lau, S. P. Graphene Quantum Dots from Chemistry to Applications. Mater. Today Chem. 2018, 10, 221-258.
  •  
  • 23. Xia, C.; Zhu, S.; Feng, T.; Yang, M.; Yang, B. Evolution and Synthesis of Carbon Dots: From Carbon Dots to Carbonized Polymer Dots. Adv. Sci. 2019, 6, 1901316-1901338.
  •  
  • 24. Zheng, L.; Chi, Y.; Dong, Y.; Lin, J.; Wang, B. Electrochemiluminescence of Water-soluble Carbon Nanocrystals Released Electrochemically from Graphite. J. Am. Chem. Soc. 2009, 131, 4564-4565.
  •  
  • 25. Gonçalves, H.; Jorge, P. A.; Fernandes, J. R. A.; da Silva, J. C. E. Hg (II) Sensing Based on Functionalized Carbon Dots Obtained by Direct Laser Ablation. Sens. Actuators, B. 2010, 145, 702-707.
  •  
  • 26. Dey, S.; Govindaraj, A.; Biswas, K.; Rao, C. N. R. Luminescence Properties of Boron and Nitrogen Doped Graphene Quantum Dots Prepared from Arc-Discharge-Generated Doped Graphene Samples. Chem. Phys. Lett. 2014, 595, 203-208.
  •  
  • 27. de Medeiros, T. V.; Manioudakis, J.; Noun, F.; Macairan, J. R.; Victoria, F.; Naccache, R. Microwave-Assisted Synthesis of Carbon Dots and Their Applications. J. Mater. Chem. C 2019, 7, 7175-7195.
  •  
  • 28. Li, H.; He, X.; Liu, Y.; Huang, H.; Lian, S.; Lee, S. T.; Kang, Z. One-Step Ultrasonic Synthesis of Water-Soluble Carbon Nanoparticles with Excellent Photoluminescent Properties. Carbon 2011, 49, 605-609.
  •  
  • 29. Mehta, V. N.; Jha, S.; Basu, H.; Singhal, R. K.; Kailasa, S. K. One-Step Hydrothermal Approach to Fabricate Carbon Dots from Apple Juice for Imaging of Mycobacterium and Fungal Cells. Sens. Actuators, B. 2015, 213, 434-443.
  •  
  • 30. Desai, A. M.; Singh, P. K. Ratiometric Fluorescence Turn-On Sensing of Perrhenate Anion, a Non-Radioactive Surrogate of Hazardous Pertechnetate, in Aqueous Solution. Sens. Actuators, B. 2018, 277, 205-209.
  •  
  • 31. Desai, A. M.; Singh, P. K. An Ultrafast Molecular-Rotor-Based Fluorescent Turn-On Sensor for the Perrhenate Anion in Aqueous Solution. Chem. Eur. J. 2019, 25, 2035-2042.
  •  
  • 32. Choi, M. R.; Lee, B. Synthesis of Cationic Carbon Quantum Dot-Based Dual Emission Fluorescence Sensor for Detecting Perrhenate Anions in Aqueous Solutions. Opt. Mater. 2022, 134, 113190-113200.
  •  
  • 33. Song, Y.; Zhu, S.; Shao, J.; Yang, B. Polymer Carbon Dots–A Highlight Reviewing Their Unique Structure, Bright Emission and Probable Photoluminescence Mechanism. J. Polym. Sci. Pol. Chem. 2017, 55, 610-615.
  •  
  • 34. He, X.; Chen, P.; Zhang, J.; Luo, T. Y.; Wang, H. J.; Liu, Y. H.; Yu, X. Q. Cationic Polymer-Derived Carbon Dots for Enhanced Gene Delivery and Cell Imaging. Biomater. Sci. 2019, 7, 1940-1948.
  •  
  • 35. Du, L.; Zhang, S.; Chen, G.; Yin, G.; Du, C.; Tan, Q.; Sun, Y.; Qu, Y.; Gao, Y. Polyelectrolyte Assisted Synthesis and Enhanced Oxygen Reduction Activity of Pt Nanocrystals with Controllable Shape and Size. ACS Appl. Mater. Interfaces 2014, 6, 14043-14049.
  •  
  • 36. Kłodzińska, E.; Szumski, M.; Dziubakiewicz, E.; Hrynkiewicz, K.; Skwarek, E.; Janusz, W.; Buszewski, B. Effect of Zeta Potential Value on Bacterial Behavior During Electrophoretic Separation. Electrophoresis 2010, 31, 1590-1596.
  •  
  • 37. Francis, S.; Varshney, L.; Sabharwal, S. Thermal Degradation Behavior of Radiation Synthesized Polydiallyldimethylammonium Chloride. Eur. Polym. J. 2007, 43, 2525-2531.
  •  
  • 38. Celestino, G. G.; Henriques, R. R.; Shiguihara, A. L.; Constantino, V. R.; de Siqueira Melo, R.; Amim Júnior, J. Adsorption of Gallic Acid on Nanoclay Modified with Poly (Diallyldimethylammonium Chloride). Environ. Sci. Pollut. Res. 2019, 26, 28444-28454.
  •  
  • 39. Lin, C. J.; Unnikrishnan, B.; Lehman, C. W.; Wang, P. H.; Tseng, Y. J.; Harroun, S. G.; Huang, C. C. Exploring Molecular Moieties on Carbonized Polymer Dots from Flavonoid Glycosides with Activity against Enterovirus A71. Carbon 2022, 192, 285-294.
  •  
  • 40. Jeppu, G. P.; Clement, T. P. A Modified Langmuir-Freundlich Isotherm Model for Simulating pH-Dependent Adsorption Effects. J. Contam. Hydrol. 2012, 129, 46-53.
  •  
  • 41. Azizian, S.; Haerifar, M.; Basiri-Parsa, J. Extended Geometric Method: A Simple Approach to Derive Adsorption Rate Constants of Langmuir–Freundlich Kinetics. Chemosphere 2007, 68, 2040-2046.
  •  
  • 42. Ho, T. L. Hard Soft Acids Bases (HSAB) Principle and Organic Chemistry. Chem. Rev. 1975, 75, 1-20.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2025; 49(2): 170-180

    Published online Mar 25, 2025

  • 10.7317/pk.2025.49.2.170
  • Received on Jul 9, 2024
  • Revised on Dec 15, 2024
  • Accepted on Dec 16, 2024

Correspondence to

  • Byunghwan Lee
  • Department of Chemical Engineering, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 42601, Korea

  • E-mail: leeb@kmu.ac.kr