• Electrical, Thermal, Mechanical and Morphological Properties of Poly(4-methyl-1-pentene) Nanocomposites Filled with Electrically Conductive Tin Dioxide
  • Hyung Woo Koo, Young Jun Kim , Anihc Chin A Ku*, Young Seob Jong**, and Eun-Soo Park**,†

  • Department of Food and Biotechnology, Korea University Sejong Campus, 2511, Sejong-ro, Jochiwon-eup, Sejong-si 30019, Korea
    *Micron Semiconductor Asia Pte. Ltd., 990 Bendemeer Rd, 339942 Singapore
    **Intechnology Co., Ltd., 861-46, Poseungjangan-ro, Jang-an-ri, Jangan-myeon, Hwaseong-si, Gyeonggi-do 18586, Korea

  • 전기전도성 산화주석으로 충전된 폴리(4-메틸-1-펜텐) 나노복합체의 전기적, 열적, 기계적 및 형태학적 특성
  • 구형우 · 김영준 · 구진아* · 정영섭** · 박은수**,†

  • 고려대학교 세종캠퍼스, *마이크론 테크놀로지, **(주)인테크놀로지

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Hausmann, K. Permanent Antistatic Agent Offers Long Term Performance for Films and Containers. Plastics Additives Compounding 2007, 9, 40-42.
  •  
  • 2. Deng, T.; Garg, V.; Bradley, M. S. A. Electrostatic Charging of Fine Powders and Assessment of Charge Polarity Using an Inductive Charge Sensor, Nanomanufacturing 2023, 3, 281-292.
  •  
  • 3. Jildeh, Z. B.; Wagner, P. H.; Schöning M. J. Sterilization of Objects, Products, and Packaging Surfaces and Their Characterization in Different Fields of Industry: The Status in 2020. Phys. Status Solidi (A) Appl. Mater. Sci. 2001, 218, 2000732.
  •  
  • 4. Iuliano, A.; Fabiszewska, A.; Kozik, K.; Rzepna, M.; Ostrowska, J.; Dębowski, M.; Plichta, A. Efect of Electron‑Beam Radiation and Other Sterilization Techniques on Structural, Mechanical and Microbiological Properties of Thermoplastic Starch Blend. J. Polym. Environ. 2021, 29, 1489-1504.
  •  
  • 5. Haji-Saeid, M.; Sampa, M. H. O.; Chmielewski, A. G. Radiation Treatment for Sterilization of Packaging Materials. Radiat. Phys. Chem. 2007, 76, 1535-1541.
  •  
  • 6. Munir, M. T.; Federighi, M. Control of Foodborne Biological Hazards by Ionizing Radiations. Foods 2020, 9, 878.
  •  
  • 7. Farkas, J.; Mohácsi-Farkas, C. History and Future of Food Irradiation. Trends Food Sci. Technol. 2011, 22, 121-126.
  •  
  • 8. Chaiphaksa, W.; Yonphan, S.; Kalkornsurapranee, E.; Tuljittraporn, A.; Kothan S.; Kaewjaeng, S.; Kedkaew, C.; Kaewkhao, J. Photon, Charged Particles, and Neutron Shielding Properties of Natural Rubber/SnO2 Composites. Radiat. Phys. Chem. 2023, 203, 110622.
  •  
  • 9. Schumm, B.; Abendroth, T.; Alajlan, S. A.; Almogbel, A. M.; Althues, H.; Härtel, P.; Mäder, G.; Kaskel, S. Combination of Zinc Oxide and Antimony Doped Tin Oxide Nanocoatings for Glazing Application. Coatings 2018, 8, 248.
  •  
  • 10. Dorigato, A.; Pegoretti, A. Tensile Creep Behaviour of Polymethyl- pentene-silica Nanocomposites. Polym. Int. 2010, 5, 719-724.
  •  
  • 11. Choi, Y.-T.; Kim, S. B.; Lee, S. J.; Kim, G.-T.; Park, E.-H.; Park, E. S. Morphology, Thermal, Mechanical and Electrical Insulation Properties of Poly(4-methyl-1-pentene)/poly(ethylene-co-vinyl alcohol)-coated TiO2 Nanocomposites. Compos. B: Eng. 2017, 114, 268-279.
  •  
  • 12. Chen, S.; Jin, J.; Zhang, J. Non-isothermal Crystallization Behaviors of Poly(4-methyl-pentene-1). J. Therm. Anal. Calorim. 2011, 103, 229-236.
  •  
  • 13. Kim, S. B.; Young, S. J.; Park, E.-S. Thermal, Mechanical, Electrical, and Flame Retardant Properties of Poly(4-methyl-1-pentene) Based Composites Filled with Magnesium Hydroxide, Polym. Korea 2022, 46, 529-535.
  •  
  • 14. Park, E.-S. Mechanical Properties and Processibilty of Glass-Fiber, Wollastonite, and Fluoro Rubber-Reinforced Silicone Rubber Composites. J. Appl. Polym. Sci. 2007, 105, 460-468.
  •  
  • 15. Lei, H. F.; Zhang, Z. Q.; Liu, B. Effect of Fiber Arrangement on Mechanical Properties of Short Fiber Reinforced Composites. Compos. Sci. Technol. 2012, 72, 506-514
  •  
  • 16. Aharoni, S. M.; Charlet, G.; Delmas, G. Investigation of Solutions and Gels of Poly(4-methyl-1-pentene) in Cyclohexane and Decalin by Viscosimetry, Calorimetry, and X-ray Diffraction. A New Crystalline Form of Poly(4-methyl-1-pentene) from Gels. Macromol. 1981, 1390-1394.
  •  
  • 17. Fang, J.; Kiran, E. Crystallization and Gelation of Isotactic Poly(4-methyl-1-pentene) in n-pentane and in n-pentane +CO2 at High Pressures. J. Supercritical Fluids 2006, 38, 132-145.
  •  
  • 18. Charlet, G.; Delmas, G. Effect of Solvent on the Polymorphism of Poly(4-methylpentene-1): 2. Crystallization in Semi-dilute Solutions. Polymer 1984, 25, 1619-1625.
  •  
  • 19. Bu, H.; Nie, G.; Rong, J. Crystallization and Compatibility of Poly(4-methyl-1-pentene) and Polypropylene in Their Blends. J. Thermoplastic. Compos. Mater. 2013, 28, 1110-1123.
  •  
  • 20. Ma, A.-P.; Xu, L.-Y.; Yin, B.; Yang, M.-B.; Xiea, B.-H. Influences of Melt-draw Ratio and Annealing on the Crystalline Structure and Orientation of Poly(4-methyl-1-pentene) Casting Films, RSC Adv. 2016, 6, 62038-62044.
  •  
  • 21. Xu, L.-Y.; Yan, H.-W.; Gong, L.; Yin, B.; Yang, M. Poly(4-methyl-1-pentene)/alkylated Graphene Oxide Nanocomposites: the Emergence of a New Crystal Structure. RSC Adv. 2015, 5, 4238-4244.
  •  
  • 22. Sałasińska, K.; Borucka, M.; Celiński, M.; Gajek, A.; Zatorski, W.; Mizera, K.; Leszczyńska, M.; Ryszkowska, J. Thermal Stability, Fire Behavior, and Fumes Emission of Polyethylene Nanocomposites with Halogen-free Fire Retardants. Adv. Polym. Technol. 2018, 37, 2394-2410.
  •  
  • 23. Park, E. S. Effects of Electron Beam Irradiation on Properties of ETFE Insulated Electric Wire. Iran Polym. J. 2011, 20, 873-885.
  •  
  • 24. Otaguro, H.; de Lima, L. F. C. P.; Parra, D. F.; Lugão, A. B.; Chinelatto, M. A.; Canevarolo, S. V. High-energy Radiation Forming Chain Scission and Branching in Polypropylene. Radiat. Phys. Chem. 2010, 79, 318-324.
  •  
  • 25. Narkis, M.; Raiter, I.; Shkolnik, A.; Eyerer, P. J. Structure and Tensile Behavior of Irradiation and Peroxide-crosslinked Polyethylenes. J. Macromol. Sci. Part B: Physics 1987, 26, 37-58.
  •  
  • 26. Park, E. H.; Kim, S. B.; Choi, Y.-T.; Park, E.-S. Effects of Electron Beam Irradiation on Thermal and Mechanical Properties of Nylon 6, Nylon 66 and Nylon 1212. Res. Rev. Polym. 2016, 7, 7-19.
  •  
  • 27. Zaharescu, T.; Silva, L. G. A.; Jipa, S.; Kappel, W. Post-irradiation thermal Degradation of PA6 and PA6,6. Radiat. Phys. Chem. 2010, 79, 388-391.
  •  
  • 28. Zhang, M. C.; Guo, B.-H.; Xu, J. A Review on Polymer Crystallization Theories. Crystals 2017, 7, 4.
  •  
  • 29. Sabet, M.; Soleimani, H.; Hassan, A.; Ratnam, C. T. Electron Beam Irradiation of LDPE Filled with Calcium Carbonate and Metal Hydroxides. Polym.-Plast. Technol. Eng. 2014, 53, 1362-1366.
  •  
  • 30. Chen, L.; Zhang, J. Designs of Conductive Polymer Composites with Exceptional Reproducibility of Positive Temperature Coefficient Effect: A Review. J. Appl. Polym. Sci. 2020, 138, 49677.
  •  
  • 31. Jong, Y. S.; Han, S.-H.; Park, E.-S. Effects of Thermal Aging on Morphology, Resistivity, and Thermal Properties of Extruded High-density Polyethylene/carbon Black Heating Elements. Polym. Compos. 2011, 32, 1049-1061.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2025; 49(2): 205-213

    Published online Mar 25, 2025

  • 10.7317/pk.2025.49.2.205
  • Received on Sep 23, 2024
  • Revised on Dec 4, 2024
  • Accepted on Dec 5, 2024

Correspondence to

  • Young Jun Kim and Eun-Soo Park**
  • Department of Food and Biotechnology, Korea University Sejong Campus, 2511, Sejong-ro, Jochiwon-eup, Sejong-si 30019, Korea
    **Intechnology Co., Ltd., 861-46, Poseungjangan-ro, Jang-an-ri, Jangan-myeon, Hwaseong-si, Gyeonggi-do 18586, Korea

  • E-mail: yk46@korea.ac.kr, t2phage@hitel.net