• Effect of Halloysite Nanotube Modification and Its Interaction with Microcrystalline Cellulose
  • Suhnue Kim*, **, Taeho Kim**, ***, and Hyungsup Kim*, **,†

  • *Advanced Materials Program, Department of Materials Science and Engineering, Konkuk University, Seoul 05029, Korea
    **Department of Materials Science and Engineering, Konkuk University, Seoul 05029, Korea
    ***Current Address: SK Innovation, Daejeon 34124, Korea

  • Halloysite Nanotube 개질에 따른 미세결정질 셀룰로오스/Halloysite Nanotube 상호작용 고찰
  • 김선유*, ** · 김태호**, *** · 김형섭*, **,†

  • *건국대학교 재료공학 첨단소재융합 전공, **건국대학교 공과대학 재료공학과, ***현소속: SK 이노베이션

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Chiellini, E.; Solaro, R. Biodegradable Polymeric Materials. Adv. Mater. 1996, 8, 305-313.
  •  
  • 2. Kim, T.; Song, Y.; Ahn, J.; Kim, M.; Ko, E.; Kim, H. Rheological Interpretation of Intermediate Physical State of Gel and Liquid Crystalline Phases In Cellulose Solution and Their Synergetic Effects on the Mechanical Property. Cellulose 2021, 28, 10863-10874.
  •  
  • 3. Tanpichai, S.; Boonmahitthisud, A.; Soykeabkaew, N.; Ongthip, L. Review of the Recent Developments in All-cellulose Nanocomposites: Properties and Applications. Carbohydr. Polym. 2022, 286, 119192.
  •  
  • 4. Song, H.; Niu, Y.; Wang, Z.; Zhang, J. Liquid Crystalline Phase and Gel−sol Transitions for Concentrated Microcrystalline Cellulose (MCC)/1-Ethyl-3-methylimidazolium Acetate (EMIMAc) Solutions. Biomacromolecules 2011, 12, 1087-1096.
  •  
  • 5. Gilbert, R.-D.; Patton, P. Liquid Crystal Formation in Cellulose and Cellulose Derivatives. Prog. Polym. Sci. 1983, 9, 115-131.
  •  
  • 6. Parthasarathi, R.; Bellesia, G.; Chundawat, S.; Dale, B.; Langan, P.; Gnanakaran, S. Insights Into Hydrogen Bonding and Stacking Interactions in Cellulose. J. Phys. Chem. A 2011, 115, 14191-14202.
  •  
  • 7. Liebert, T. Cellulose Solvents–remarkable History, Bright Future. In Cellulose Solvents: for Analysis, Shaping and Chemical Modification; ACS Publications: Washington, DC, 2010; pp 3-54.
  •  
  • 8. Qi, H.; Schulz, B. r.; Vad, T.; Liu, J.; Mäder, E.; Seide, G.; Gries, T. Novel Carbon Nanotube/cellulose Composite Fibers as Multifunctional Materials. ACS App. Mater. Interfaces 2015, 7, 22404-22412.
  •  
  • 9. Sheykhnazari, S.; Tabarsa, T.; Ashori, A.; Ghanbari, A. Bacterial Cellulose Composites Loaded with SiO2 Nanoparticles: Dynamic-mechanical and Thermal Properties. Int. J. Biological Macromol. 2016, 93, 672-677.
  •  
  • 10. Eskilson, O.; Lindström, S. B.; Sepulveda, B.; Shahjamali, M. M.; Güell-Grau, P.; Sivlér, P.; Skog, M.; Aronsson, C.; Björk, E. M.; Nyberg, N. Self-assembly of Mechanoplasmonic Bacterial Cellulose–metal nanoparticle composites. Adv. Functional Mater. 2020, 30, 2004766.
  •  
  • 11. Rawtani, D.; Agrawal, Y. Multifarious Applications of Halloysite Nanotubes: a Review. Rev. Adv. Mater. Sci 2012, 30, 282-295.
  •  
  • 12. Kamble, R.; Ghag, M.; Gaikawad, S.; Panda, B. K. Halloysite Nanotubes and Applications: a Review. J. Adv. Scientific Res. 2012, 3, 25-29.
  •  
  • 13. Cavallaro, G.; Lazzara, G.; Milioto, S.; Parisi, F. Hydrophobically Modified Halloysite Nanotubes as Reverse Micelles for Water-in-oil Emulsion. Langmuir 2015, 31, 7472-7478.
  •  
  • 14. Riela, S.; Massaro, M.; Colletti, C. G.; Bommarito, A.; Giordano, C.; Milioto, S.; Noto, R.; Poma, P.; Lazzara, G. Development and Characterization of Co-loaded Curcumin/triazole-halloysite Systems and Evaluation of Their Potential Anticancer Activity. Int. J. Pharmaceutics 2014, 475, 613-623.
  •  
  • 15. Cavallaro, G.; Lazzara, G.; Milioto, S.; Parisi, F.; Sanzillo, V. Modified Halloysite Nanotubes: Nanoarchitectures for Enhancing the Capture of Oils from Vapor and Liquid Phases. ACS App. Mater. Interfaces 2014, 6, 606-612.
  •  
  • 16. Bertolino, V.; Cavallaro, G.; Lazzara, G.; Merli, M.; Milioto, S.; Parisi, F.; Sciascia, L. Effect of the Biopolymer Charge and the Nanoclay Morphology on Nanocomposite Materials. Ind. Eng. Chem. Res. 2016, 55, 7373-7380.
  •  
  • 17. Gradzik, B.; Stenzel, A.; Boccaccini, A. R.; El Fray, M. Influence of Functionalized Halloysite Clays (HNT) on Selected Properties of Multiblock (e) PBS-EG Copolymer Obtained by Enzymatic Catalysis. Designed Monomers and Polym. 2015, 18, 501-511.
  •  
  • 18. Tarı̀, G.; Bobos, I.; Gomes, C. S.; Ferreira, J. M. Modification of Surface Charge Properties During Kaolinite to Halloysite-7Å Transformation. J. Colloid Interface Sci. 1999, 210, 360-366.
  •  
  • 19. Liu, X. Y.; Sawant, P. D.; Tan, W. B.; Noor, I.; Pramesti, C.; Chen, B. Creating New Supramolecular Materials by Architecture of Three-dimensional Nanocrystal Fiber Networks. J. Am. Chem. Soc. 2002, 124, 15055-15063.
  •  
  • 20. Kondo, T.; Miyamoto, T. The Influence of Intramolecular Hydrogen Bonds on Handedness in Ethylcellulose/CH2Cl2 Liquid Crystalline Mesophases. Polymer 1998, 39, 1123-1127.
  •  
  • 21. Kim, M.; Kim, T.; Kim, H. Rheological Analysis of Physical States of Cellulose Nanocrystal Suspension and Synergetic Effect of Aligned Gel State. Carbohydr. Polym. 2022, 284, 119170.
  •  
  • 22. Ahn, Y.; Kwak, S.-Y.; Song, Y.; Kim, H. Physical State of Cellulose in BmimCl: Dependence of Molar Mass on Viscoelasticity and Sol-gel Transition. Phys. Chem. Chem. Phys. 2016, 18, 1460-1469.
  •  
  • 23. Kim, Y.; Song, Y.; Kim, H. Preparation of Transparent Cellulose Film with Controlled Haze Using Halloysite Nanotubes. Cellulose 2018, 25, 1239-1248.
  •  
  • 24. He, T. Polymer Strength and Chain Conformation. Die Makromolekulare Chem. Macromol. Chem. Phys. 1987, 188, 2489-2494.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2025; 49(2): 214-221

    Published online Mar 25, 2025

  • 10.7317/pk.2025.49.2.214
  • Received on Oct 7, 2024
  • Revised on Nov 22, 2024
  • Accepted on Nov 25, 2024

Correspondence to

  • Hyungsup Kim
  • *Advanced Materials Program, Department of Materials Science and Engineering, Konkuk University, Seoul 05029, Korea
    **Department of Materials Science and Engineering, Konkuk University, Seoul 05029, Korea

  • E-mail: iconclast@konkuk.ac.kr