• Clamshell-shaped Droplet-based Electricity Generator with a Water Droplet Confined in a Wedge Plate
  • Jung Hyeon Jin# , In Hyeok Oh# , and Suk Tai Chang

  • Department of Chemical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea

  • 고정된 물방울을 이용한 조개 모양의 물방울 기반 전기 발전기
  • 진정현# · 오인혁# · 장석태

  • 중앙대학교 화학공학과

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Zheng, Y.; Li, J.; Xu, T.; Cui, H.; Li, X. Triboelectric Nanogenerator for Droplet Energy Harvesting Based on Hydrophobic Composites. Materials (Basel). 2023, 16, 5439-5449.
  •  
  • 2. Li, W.; Zhang, B.; Yuan, Z.; Shen, P.; Yu, X.; Wang, Z. L.; Cheng, T. IEEE Trans. Enhancing Energy Storage and Utilization of Triboelectric Nanogenerator by a Synchronized Charge Accumulation Circuit. Power Electron. 2023, 38, 9294-9301.
  •  
  • 3. Li, X.; Ning, X.; Li, L.; Wang, X.; Li, B.; Li, J.; Yin, J.; Guo, W. Performance and Power Management of Droplets-based Electricity Generators. Nano Energy 2022, 92, 106705-106712.
  •  
  • 4. Xu, W.; Zhou, X.; Hao, C.; Zheng, H.; Liu, Y.; Yan, X.; Yang, Z.; Leung, M.; Zeng, X. C.; Xu, R. X.; SLIPS-TENG, Z. Robust Triboelectric Nanogenerator with Optical and Charge Transparency Using a Slippery Interface. Natl. Sci. Rev. 2019, 6, 540-550.
  •  
  • 5. Rehman, S.; Al-Hadhrami, L. M.; Alam, M. M. Pumped Hydro Energy Storage System: A Technological Review. Renew. Sustain. Energy Rev. 2015, 44, 586-598.
  •  
  • 6. Wang, Y.; Gao, S.; Xu, W.; Wang, Z. Nanogenerators with Superwetting Surfaces for Harvesting Water/Liquid Energy. Adv. Funct. Mater. 2020, 30, 1908252-1908266.
  •  
  • 7. Xu, W.; Zheng, H.; Liu, Y.; Zhou, X.; Zhang, C.; Song, Y.; Deng, X.; Leung, M.; Yang, Z.; Xu, R. X.; Wang, Z. L.; Zeng, X. C.; Wang, Z. A Droplet-based Electricity Generator with High Instantaneous Power Density. Nature 2020, 578, 392-407.
  •  
  • 8. Wang, X.; Fang, S.; Tan, J.; Hu, T.; Chu, W.; Yin, J.; Zhou, J.; Guo, W. Dynamics for Droplet-based Electricity Generators. Nano Energy 2021, 80, 105558-105563.
  •  
  • 9. Zhang, N.; Gu, H.; Lu, K.; Ye, S.; Xu, W.; Zheng, H.; Song, Y.; Liu, C.; Jiao, J.; Wang, Z.; Zhou, X. A Universal Single Electrode Droplet-based Electricity Generator (SE-DEG) for Water Kinetic Energy Harvesting. Nano Energy 2021, 82, 105735-105743.
  •  
  • 10. J. Dong, C. Xu, L. Zhu, X. Zhao, H. Zhou, H. Liu, G. Xu, G. Wang, G. Zhou, Q. Zeng, Q. Song, A high voltage direct current droplet-based electricity generator inspired by thunderbolts. Nano Energy 2021, 90, 106567-106576.
  •  
  • 11. Li, Z.; Yang, D.; Zhang, Z.; Lin, S.; Cao, B.; Wang, L.; Wang, Z. L.; Yin, F. A Droplet-based Electricity Generator for Large-scale Raindrop Energy Harvesting. Nano Energy 2022, 100, 107443-107449.
  •  
  • 12. Wang, L.; Song, Y.; Xu, W.; Li, W.; Jin, Y.; Gao, S.; Yang, S.; Wu, C.; Wang, S.; Wang, Z. Harvesting Energy from High-frequency Impinging Water Droplets by a Droplet-based Electricity Generator. EcoMat 2021, 3, 12116-12124.
  •  
  • 13. Liu, C.; Sun, J.; Zhuang, Y.; Wei, J.; Li, J.; Dong, L.; Yan, D.; Hu, A.: Zhou, X.; Wang, Z. Self-propelled Droplet-based Electricity Generation. Nanoscale 2018, 10, 23164-23169.
  •  
  • 14. Choi, D.; Lee, S.; Park, S. M.; Cho, H.; Hwang, W.; Kim, D. S. Energy Harvesting Model of Moving Water Inside a Tubular System and its Application of a Stick-type Compact Triboelectric Nanogenerator. Nano Res. 2015, 8, 2481-2491.
  •  
  • 15. Nanogenerator, T.; Cheng, G.; Lin, Z.; Du, Z.; Wang, Z. L. Simultaneously Harvesting Electrostatic and Mechanical Energies from Flowing Water by a Hybridized Triboelectric Nanogenerator. ACS Nano 2014, 8, 1932-1939.
  •  
  • 16. Yao, Y.; Jiang, T.; Zhang, L.; Chen, X.; Gao, Z.; Wang, Z. L. Charging System Optimization of Triboelectric Nanogenerator for Water Wave Energy Harvesting and Storage. ACS Appl. Mater. Interfaces 2016, 8, 21398-21406.
  •  
  • 17. Liu, Y.; Liu, W.; Wang, Z.; He, W.; Tang, Q.; Xi, Y.; Wang, X.; Guo, H.; Hu, C. Quantifying Contact Status and the Air-breakdown Model of Charge-excitation Triboelectric Nanogenerators to Maximize Charge Density. Nat. Commun. 2020, 11, 1599-1606.
  •  
  • 18. Y. Su, Y. Yang, X. Zhong, H. Zhang, Z. Wu, Y. Jiang, Z. L. Wang, Fully Enclosed Cylindrical Single-Electrode-Based Triboelectric Nanogenerator. ACS Appl. Mater. Interfaces 2014, 6, 553-559.
  •  
  • 19. Lin, Z. H.; Cheng, G.; Lin, L.; Lee, S.; Wang, Z. L. Water-Solid Surface Contact Electrification and its Use for Harvesting Liquid Wave Energy. Angew. Chemie - Int. Ed. 2013, 52, 12545-12550.
  •  
  • 20. Liang, Q.; Yan, X.; Gu, Y.; Zhang, K.; Liang, M.; Lu, S.; Zheng, X.; Zhang, Y. Highly Transparent Triboelectric Nanogenerator for Harvesting Water-related Energy Reinforced by Antireflection Coating. Sci. Rep. 2015, 5, 9080-9086.
  •  
  • 21. Kim, S.; Gupta, M. K.; Lee, K. Y.; Sohn, A.; Kim, T. Y.; Shin, K. S.; Kim, D.; Kim, S. K.; Lee, K. H.; Shin, H. J.; Kim, D. W.; Kim, S. W. Transparent Flexible Graphene Triboelectric Nanogenerators. Adv. Mater. 2014, 26, 3918-3925.
  •  
  • 22. Chatterjee, S.; Burman, S. R.; Khan, I.; Saha, S.; Choi, D.; Lee, S.; Lin, Z. H. Recent Advancements in Solid–liquid Triboelectric Nanogenerators for Energy Harvesting and Self-powered Applications. Nanoscale 2020, 12, 17663-17697.
  •  
  • 23. Quan, T.; Wu, Y.; Yang, Y. Hybrid Electromagnetic–triboelectric Nanogenerator for Harvesting Vibration Energy. Nano Res. 2015, 8, 3272-3280.
  •  
  • 24. Khan, U.; Kim, S. W. Triboelectric Nanogenerators for Blue Energy Harvesting. ACS Nano 2016, 10, 6429-6432.
  •  
  • 25. Wang, X.; Wen, Z.; Guo, H.; Wu, C.; He, X.; Lin, L.; Cao, X.; Wang, Z. L. Fully Packaged Blue Energy Harvester by Hybridizing a Rolling Triboelectric Nanogenerator and an Electromagnetic Generator. ACS Nano 2016, 10, 11369-11376.
  •  
  • 26. Yoo, D.; Kim, S. J.; Joung, Y.; Jang, S.; Choi, D.; Kim, D. S. Lotus Leaf-inspired Droplet-based Electricity Generator with Low-adhesive Superhydrophobicity for a Wide Operational Droplet Volume Range and Boosted Electricity Output. Nano Energy 2022, 99, 107361-107372.
  •  
  • 27. Lin, Z. H.; Cheng, G.; Lee, S.; Pradel, K. C.; Wang, Z. L. Harvesting Water Drop Energy by a Sequential Contact-Electrifi cation and Electrostatic-Induction Process. Adv. Mater. 2014, 26, 4690-4696.
  •  
  • 28. Banpurkar, A. G.; Sawane, Y.; Wadhai, S. M.; Murade, C. U.; Siretanu, I.; Van Den Ende, D.; Mugele, F. Spontaneous Electrification of Fluoropolymer–water Interfaces Probed by Electrowetting. Faraday Discuss. 2017, 199, 29-47.
  •  
  • 29. Yang, L.; Wang, Y.; Guo, Y.; Zhang, W.; Zhao, Z. Robust Working Mechanism of Water Droplet-Driven Triboelectric Nanogenerator: Triboelectric Output versus Dynamic Motion of Water Droplet. Adv. Mater. Interfaces 2019, 6, 1901547-1901555.
  •  
  • 30. Liu, H.; Dong, J.; Zhou, H.; Yang, X.; Xu, C.; Yao, Y.; Zhou, G.; Zhang, S.; Song, Q. Real-Time Acid Rain Sensor Based on a Triboelectric Nanogenerator Made of a PTFE−PDMS Composite Film. ACS Appl. Electron. Mater. 2021, 3, 4162-4171.
  •  
  • 31. Shima, S.; Uejima, R.; Takamura, E.; Sakamoto, H. Relationship between Output Voltage of Water Droplet-based Electricity Nanogenerator and Electrolyte Concentration. Nano Energy 2023, 112, 108503-108508.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2025; 49(2): 253-260

    Published online Mar 25, 2025

  • 10.7317/pk.2025.49.2.253
  • Received on Nov 1, 2024
  • Revised on Nov 14, 2024
  • Accepted on Nov 29, 2024

Correspondence to

  • Suk Tai Chang
  • Department of Chemical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea

  • E-mail: stchang@cau.ac.kr