• Modeling of Relaxational Behaviors of Crosslinked Polymer Networks with Dynamic Covalent Bonds
  • Sohdam Jeong*, **,†

  • *Department of Chemical Engineering, Dong-eui University, 176 Eomgwang-ro, Busanjin-gu, Busan 47340, Korea
    **Center for Brain Busan 21 Plus Program, Dong-eui University, Busan 47340, Korea

  • 동적 공유 결합을 갖는 가교 고분자 네트워크의 완화 거동 모델링
  • 정소담*, **,†

  • *동의대학교 화학공학과, **동의대학교 BB21+ 사업단

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Guo, Q. Thermosets: structure, properties, and applications; Woodhead Publishing, 2017.
  •  
  • 2. Zheng, H.; Xu, Y.; Zhao, Q.; Xie, T. Dynamic Covalent Polymer Networks: A Molecular Platform for Designing Functions Beyond Chemical Recycling and Self-Healing. Chem. Rev. 2021, 121, 1716-1745.
  •  
  • 3. Huang, S.; Kong, X.; Xiong, Y.; Zhang, X.; Chen, H.; Jiang, W.; Niu, Y.; Xu, W.; Ren, C. An Overview of Dynamic Covalent Bonds in Polymer Material and Their Applications. Eur. Polym. J. 2020, 141, 110094.
  •  
  • 4. Scott, T. F.; Schneider, A. D.; Cook, W. D.; Bowman, C. N. Photoinduced Plasticity in Cross-linked Polymers. Science 2005, 308, 1615-1617.
  •  
  • 5. Leibler, L.; Rubinstein M.; Colby, R. H. Dynamics of Reversible Networks. Macromolecules 1991, 24, 4701-4707.
  •  
  • 6. Yang, Y.; Zhang, S.; Zhang, X.; Gao, L.; Wei Y.; Ji, Y. Detecting Topology Freezing Transition Temperature of Vitrimers by AIE Luminogens. Nat. Commun. 2019, 10, 3165.
  •  
  • 7. Montarnal, D.; Capelot, M.; Tournilhac, F.; Leibler, L. Silica-Like Malleable Materials from Permanent Organic Networks. Science 2011, 334, 965-968.
  •  
  • 8. Fang, H.; Ye, W.; Ding, Y.; Winter, H.H. Rheology of the Critical Transition State of an Epoxy Vitrimer. Macromolecules 2020, 53, 4855-4862.
  •  
  • 9. Chakma, P.; Konkolewicz, D. Dynamic Covalent Bonds in Polymeric Materials. Angew. Chem. 2019, 58, 9682-9695.
  •  
  • 10. Yang, H.; Yu, K.; Mu, X.; Shi, X.; Wei, Y.; Guo, Y.; Qi, H. J. A Molecular Dynamics Study of Bond Exchange Reactions in Covalent Adaptable Networks. Soft Matter 2015, 11, 6305-6317.
  •  
  • 11. Singh, G.; Sundararaghavan, V. Modeling Self-healing Behavior of Vitrimers Using Molecular Dynamics with Dynamic Cross-linking Capability. Chem. Phys. Lett. 2020, 760, 137966.
  •  
  • 12. Rottach, D. R.; Curro, J. G.; Budzien, J.; Grest, G. S.; Svaneborg, C.; Everaers, R. Molecular Dynamics Simula Tions of Polymer Networks Undergoing Sequential Cross Linking and Scission Reactions. Macromolecules 2007, 40, 131-139.
  •  
  • 13. Yang, H.; Yu, K.; Mu, X.; Wei, Y.; Guo, Y.; Qi, H. J. Molecular Dynamics Studying on Welding Behavior in Thermosetting Polymers Due to Bond Exchange Reactions. RSC Adv. 2016, 6, 22476-22487.
  •  
  • 14. Kamble, M.; Vashisth, A.; Yang, H.; Pranompont, S.; Picu, C. R.; Wang, D.; Koratkar, N. Reversing Fatigue in Carbon-fiber Reinforced Vitrimer Composites. Carbon 2022, 187, 108-114.
  •  
  • 15. Plimpton, S. Fast Parallel Algorithms for Short-range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1-19.
  •  
  • 16. Sun, H. Force Field for Computation of Conformational Energies, Structures, and Vibrational Frequencies of Aromatic Polyesters. J. Comput. Chem. 1994, 15, 752-768.
  •  
  • 17. Ewald, P. P. Die Berechnung Optischer Und Elektrostatischer Gitterpotentiale. Ann. Phys. 1921, 369, 253-287.
  •  
  • 18. Perego, A.; Khabaz, F. Volumetric and Rheological Properties of Vitrimers: a Hybrid Molecular Dynamics and Monte Carlo Simulation Study. Macromolecules 2020, 53, 8406-8416.
  •  
  • 19. Nosé, S. A Unified Formulation of the Constant Temperature Molecular Dynamics Methods. J. Chem. Phys. 1984, 81, 511-519.
  •  
  • 20. Hoover, W. G. Canonical Dynamics: Equilibrium Phase-space Distributions. Phys. Rev. A 1985, 31, 1695-1697.
  •  
  • 21. Fox, T. G.; Loshae, S. Influence of Molecular Weight and Degree of Crosslinking on the Specific Volume and Glass Temperature of Polymers. J. Polym. Sci. 1955, 15, 371-390.
  •  
  • 22. Kubota, R., Sugane, K.; Shibata, M. Effect of Imine-containing Phenolic Hardeners with Different Chain Lengths and Epoxy Functionalities on Thermal, Mechanical, and Healing Properties of Bio-based Epoxy Vitrimers. Polym. Bull. 2024, 81, 12967-12984.
  •  
  • 23. Chuc-Gamboa, M. G.; Vargas-Coronado, R. F.; Cervantes-Uc, J. M.; Cauich-Rodríguez, J. V.; Escobar-García, D. M.; Pozos-Guillén, A.; del Barrio, J. S. R. The Effect of PEGDE Concentration and Temperature on Physicochemical and Biological Properties of Chitosan. Polymers 2019, 11, 1830.
  •  
  • 24. Sánchez, J. G.; Suárez, A. J.; Sánchez-Romate, X. X. F.; Prolongo, S. G. Influence of the Characterization Methodology on the Repair Performance of Self-Healing Materials. Eng. Proc. 2023, 31, 21.
  •  
  • 25. Karatrantos, A. V.; Couture, O.; Hesse, C.; Schmidt, D. F. Molecular Simulation of Covalent Adaptable Networks and Vitrimers: A Review. Polymers 2024, 16, 1373.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2025; 49(2): 261-266

    Published online Mar 25, 2025

  • 10.7317/pk.2025.49.2.261
  • Received on Dec 2, 2024
  • Revised on Dec 9, 2024
  • Accepted on Dec 9, 2024

Correspondence to

  • Sohdam Jeong
  • *Department of Chemical Engineering, Dong-eui University, 176 Eomgwang-ro, Busanjin-gu, Busan 47340, Korea
    **Center for Brain Busan 21 Plus Program, Dong-eui University, Busan 47340, Korea

  • E-mail: sohdam@deu.ac.kr