• Pyridoquinolinedione as a New Building Block for Semiconducting Polymer Donors in Organic Solar Cells
  • Suha Lee, Seon Lee Kwak, Hea Jung Park* and Do-Hoon Hwang

  • Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
    *Department of Biology and Chemistry, Changwon National University, Changwon 51140, Korea

  • 유기태양전지를 위한 새로운 빌딩블록인 Pyridoquinolinedione와 고분자 도너의 합성
  • 이수하 ·곽선이 · 박혜정* · 황도훈

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Kang, H.; Kim, G.; Kim, J.; Kwon, S.; Kim, H.; Lee, K. Bulk-Heterojunction Organic Solar Cells: Five Core Technologies for Their Commercialization. Adv. Mater. 2016, 28, 7821-7861.
  •  
  • 2. Søndergaard, R.; Hösel, M.; Angmo, D.; Larsen-Olsen, T. T.; Krebs, F. C. Roll-to-roll Fabrication of Polymer Solar Cells. Mater. Today, 2012, 15, 36-49.
  •  
  • 3. Dai, S.; Zhan, X. Nonfullerene Acceptors for Semitransparent Organic Solar Cells. Adv. Energy Mater. 2018, 8, 1800002.
  •  
  • 4. Kaltenbrunner, M.; White, M. S.; Głowacki, E.D.; Sekitani, T.; Someya, T.; Sariciftci, N. S.; Bauer, S. Ultrathin and Lightweight Organic Solar Cells with High Flexibility. Nat. Commun. 2012, 3, 770.
  •  
  • 5. Upama, M. B.; Wright, M.; Elumalai, N. K.; Mahmud, M. A.; Wang, D.; Xu, C.; Uddin, A. High-Efficiency Semitransparent Organic Solar Cells with Non-Fullerene Acceptor for Window Application. ACS Photonics, 2017, 4, 2327-2334.
  •  
  • 6. Ha, J.-W.; Jung, J. G.; Ryu, D. H.; Lee, S.; Song, C. E.; Lim, B.; Jung, Y. J.; Park, J. M.; Hwang, D.-H. Thienoquinolinone-based Acceptor-π-acceptor-type Building Block for Polymer Donors in Organic Solar Cells. Macromol. Res. 2023, 31, 25-31.
  •  
  • 7. Cui, Y.; Xu, Y.; Yao, H.; Bi, P.; Hong, L.; Zhang, J.; Zu, Y.; Zhang, T.; Qin, J.; Ren, J.; Chen, Z.; He, C.; Hao, X.; Wei, Z.; Hou, J. Single-Junction Organic Photovoltaic Cell with 19% Efficiency. Adv. Mater. 2021, 33, 2102420.
  •  
  • 8. Cui, Y.; Yao, H.; Zhang, J.; Xian, K.; Zhang, T.; Hong, L.; Wang, Y.; Xu, Y.; Ma, K.; An, C.; He, C.; Wei, Z.; Gao, F.; Hou, J. Single-Junction Organic Photovoltaic Cells with Approaching 18% Efficiency. Adv. Mater. 2020, 32, 1908205.
  •  
  • 9. Park, J.; Chetan, L.; Kim, H.; Jee, J.-S.; Gal, Y.-S.; Jin, S.-H. New Pyrazine-based π-conjugated Polymer for Dopant-free Perovskite Solar Cell. Macromol. Res. 2024, 32, 505-513.
  •  
  • 10. Scharber, M. C.; Mühlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. J. Design Rules for Donors in Bulk-Heterojunction Solar Cells—Towards 10 % Energy-Conversion Efficiency. Adv. Mater. 2006, 18, 789-794.
  •  
  • 11. Xu, T.; Yu, L. How to Design Low Bandgap Polymers for Highly Efficient Organic Solar Cells. Mater. Today, 2014, 17, 11-15.
  •  
  • 12. Sun, C.; Pan, F.; Qiu, B.; Qin, S.; Chen, S.; Shang, Z.; Meng, L.; Yang, C.; Li, Y. D–A Copolymer Donor Based on Bithienyl Benzodithiophene D-Unit and Monoalkoxy Bifluoroquinoxaline A-Unit for High-Performance Polymer Solar Cells. Chem. Mater. 2020, 32, 3254-3261.
  •  
  • 13. Hfaiedh, A.; Labiedh, M.; Mabrouk, A.; Braiek, M. B.; Alimi, K. Synthesis, Characterization and Structure–property Study of New Push–pull Carbazole Materials. Macromol. Res. 2023, 31, 981-999.
  •  
  • 14. Park, J. S.; Kim, G. U.; Lee, D.; Lee, S.; Ma, B.; Cho, S.; Kim, B. J. Importance of Optimal Crystallinity and Hole Mobility of BDT-Based Polymer Donor for Simultaneous Enhancements of Voc, Jsc, and FF in Efficient Nonfullerene Organic Solar Cells. Adv. Funct. Mater. 2020, 30, 2005787.
  •  
  • 15. Zheng, B.; Huo, L.; Li, Y. Benzodithiophenedione-based Polymers: Recent Advances in Organic Photovoltaics. NPG Asia Mater. 2020, 12, 3.
  •  
  • 16. Yao, H.; Ye, L.; Zhang, H.; Li, S.; Zhang, S.; Hou, J. Molecular Design of Benzodithiophene-Based Organic Photovoltaic Materials. Chem. Rev. 2016, 116, 7397-7457.
  •  
  • 17. Jung, E. H.; Ahn, H.; Jo, W. H.; Jo, J. W.; Jung, J. W. Isoindigo-Based Conjugated Polymer for High-performance Organic Solar Cell with a High VOC of 1.06 V as Processed from Non-halogenated Solvent. Dyes Pigm. 2019, 161, 113-118.
  •  
  • 18. Aumaitre, C.; Morin, J. F. Polycyclic Aromatic Hydrocarbons as Potential Building Blocks for Organic Solar Cells. Chem Rec. 2019, 19, 1142-1154.
  •  
  • 19. Zhao, C.; Guo, Y.; Zhang, Y.; Yan, N.; You, S.; Li, W. Diketopyrrolopyrrole-based Conjugated Materials for Non-fullerene Organic Solar Cells. J. Mater. Chem. A, 2019, 7, 10174-10199.
  •  
  • 20. Zhou, Y.; Zhang, W.; Yu, G. Recent Structural Evolution of Lactam- and Imide-functionalized Polymers Applied in Organic Field-effect Transistors and Organic Solar Cells. Chem. Sci. 2021, 12, 6844-6878.
  •  
  • 21. Yoon, W. S.; Kim, D. W.; Park, J.-M.; Cho, I.; Kwon, O. K.; Whang, D. R.; Kim, J. H.; Park, J.-H.; Park, S. Y. A Novel Bis-Lactam Acceptor with Outstanding Molar Extinction Coefficient and Structural Planarity for Donor–Acceptor Type Conjugated Polymer. Macromolecules 2016, 49, 8489-8497.
  •  
  • 22. Choi, M.-H.; Song, K.W.; Moon, D.K. Alkylidenefluorene–isoindigo Copolymers with An Optimized Molecular Conformation for Spacer Manipulation, ππ Stacking and Their Application in Efficient Photovoltaic Devices. Polym. Chem. 2015, 6, 2636-2646.
  •  
  • 23. Liu, H.-H.; Chang, S.-L.; Huang, K.-H.; Cao, F.-Y.; Cheng, K.-Y.; Sun, H.-S.; Lai, Y.-Y.; Cheng, Y.-J. Two-Dimensional Tetrathienonaphthalenes-Based Donor–Acceptor Copolymers: Synthesis, Isomeric Effect, and Organic Field-Effect Transistors. Macromolecules 2020, 53, 7740-7748.
  •  
  • 24. Kan, B.; Chen, X.; Gao, K.; Zhang, M.; Lin, F.; Peng, X.; Liu, F.; Jen, A.K.-Y. Asymmetrical Side-chain Engineering of Small-molecule Acceptors Enable High-performance Nonfullerene Organic Solar Cells. Nano Energy, 2020, 67, 104209.
  •  
  • 25. Xiao, Z.; Subbiah, J.; Sun, K.; Ji, S.; Jones, D. J.; Holmes, A. B.; Wong, W. W. H. J. Mater. Thiazolyl Substituted Benzodithiophene Copolymers: Synthesis, Properties and Photovoltaic Applications. Chem. C, 2014, 2, 1306-1313.
  •  
  • 26. Leounat, L.; Sbarcea, G.; Branzoi, I. V. Cyclic Voltammetry for Energy Levels Estimation of Organic Materials. Sci. Bull. Series B, 2013, 75, 111-118.
  •  
  • 27. Tumbleston, J.R.; Collins, B.A.; Yang, L.; Stuart, A.C.; Gann, E.; Ma, W.; You, W.; Ade, H. The Influence of Molecular Orientation on Organic Bulk Heterojunction Solar Cells. Nat. Photonics, 2014, 8, 385-391.
  •  
  • 28. Caballero-Quintana, I.; Amargos-Reyes, O.; Maldonado, J. L.; Nicasio-Collazo, J.; Romero-Borja, D.; Barreiro-Arguelles, D.; Molnar, G.; Bousseksou, A. Scanning Probe Microscopy Analysis of Nonfullerene Organic Solar Cells. ACS Appl. Mater. Interfaces 2020, 12, 29520-29527.
  •  
  • 29. Li, W.; Chen, M.; Cai, J.; Spooner, E. L. K.; Zhang, H.; Gurney, R. S.; Liu, D.; Xiao, Z.; Lidzey, D. G.; Ding, L.; Wang, T. Molecular Order Control of Non-fullerene Acceptors for High-Efficiency Polymer Solar Cells. Joule, 2019, 3, 819-833.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2024 Impact Factor : 0.6
  • Indexed in SCIE

This Article

  • 2025; 49(5): 556-563

    Published online Sep 25, 2025

  • 10.7317/pk.2025.49.5.556
  • Received on Jan 13, 2025
  • Revised on Apr 8, 2025
  • Accepted on Apr 9, 2025

Correspondence to

  • Do-Hoon Hwang
  • Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea

  • E-mail: dohoonhwang@pusan.ac.kr