• Gas Sensor Based on Volumetric Analysis for Measuring Gas Uptake and Diffusivity in Gas Charged Polymer Specimen
  • Ji Hun Lee*, **,† and Byeong Lyul Choi*, ***

  • *Hydrogen Energy Group, Strategic Technology Research Institute, Korea Research Institute of Standards and Science, Daejeon 34113, Korea
    **Department of Measurement Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
    ***School of Mechanical Engineering, College of Engineering, Korea University, Seoul 02841, Korea

  • 가스가 충전된 고분자 시료에서 가스 장입량과 확산도 측정을 위한 부피 분석법 기반의 가스 센서
  • 이지훈*, **,† · 최병률*, ***

  • *한국표준과학연구원 수소에너지소재연구팀, **과학기술연합대학원대학교 측정과학전공, ***고려대학교 기계공학과

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Wang, L.; Song, J.; Yu, C. Recent Progress on Mass-sensitive Gas Sensors for Environmental and Industrial Applications. Measurement 2025, 249, 117039.
  •  
  • 2. Khorsandi, A.; Ghavami Sabouri, S. Industrial Application of Apodized Gas Sensor for On-line and In Situ Measurement of CO and CO2 Concentration. J. Theoretical Appl. Phys.2020,14, 399-409.
  •  
  • 3. Xie, H.; Yu, Q.; Lu, H.; Zhang, Y.; Zhang, J.; Qin, Q. Thermodynamic Study for Hydrogen Production from Bio-oil via Sorption-enhanced Steam Reforming: Comparison with Conventional Steam Reforming. Int. J. Hydrog. Energy 2017,42, 28718-28731.
  •  
  • 4. Dell, R. M. Hydrogen as An Energy Vector in the 21st Century, in Electrochemistry in Research and Development. R. Kalvoda and R. Parsons, Eds.: Springer: Boston, 1985,pp. 73-93.
  •  
  • 5. Jung, J. K.; Kim, I. G.; Chung, K. S.; Baek, U. B. Analyses of Permeation Characteristics of Hydrogen in Nitrile Butadiene Rubber Using Gas Chromatography. Mater. Chem. Phys. 2021,267, 124653.
  •  
  • 6. Wang, Z.; Li, Z.; Jiang, T.; Xu, X.; Wang, C. Ultrasensitive Hydrogen Sensor Based on Pd(0)-loaded SnO2 Electrospun Nanofibers at Room Temperature. ACS Appl. Mater. Interfaces 2013,5, 2013-2021.
  •  
  • 7. Jung, J. K.; Lee, J. H. High-performance Hydrogen Gas Sensor System Based on Transparent Coaxial Cylinder Capacitive Electrodes and a Volumetric Analysis Technique. Sci. Rep. 2024,14, 1967.
  •  
  • 8. Ma, C.; Wang, A. Optical Fiber Tip Acoustic Resonator for Hydrogen Sensing. Opt. Lett. 2010,35, 2043-2045.
  •  
  • 9. Haija, M. A.; Ayesh, A. I.; Ahmed, S.; Katsiotis, M. S. Selective Hydrogen Gas Sensor Using CuFe2O4 Nanoparticle Based Thin Film. Appl. Surf. Sci. 2016,369, 443-447.
  •  
  • 10. Li, Z.; Yao, Z.; Haidry, A. A.; Plecenik, T.; Xie, L.; Sun, L.; Fatima, Q. Resistive-type Hydrogen Gas Sensor Based on TiO2: a Review. Int. J. Hydrog. Energy 2018,43, 21114-21132.
  •  
  • 11. Kang, H. M.; Choi, M. C.; Lee, J. H.; Yun, Y. M.; Jang, J. S.; Chung, N. K.; Jeon, S. K.; Jung, J. K.; Lee, J. H.; Lee, J. H.; Chang, Y. W.; Bae, J. W. Effect of the High-pressure Hydrogen Gas Exposure in the Silica-filled EPDM Sealing Composites with Different Silica Content. Polymers2022, 14, 1151.
  •  
  • 12. Jung, J. K.; Kim, I. G.; Kim, K. T. Evaluation of Hydrogen Permeation Characteristics in Rubbery Polymers. Curr. Appl. Phys. 2021,21, 43-49.
  •  
  • 13. Jung, J. K.; Kim, I. G.; Kim, K.-T.; Baek, U. B.; Nahm, S. H. Novel Volumetric Analysis Technique for Characterizing the Solubility and Diffusivity of Hydrogen in Rubbers. Current Appl. Phys. 2021, 26, 9-15.
  •  
  • 14. Kang, H.; Bae, J.; Lee, J.; Yun, Y.; Jeon, S.; Chung, N.; Jung, J.; Baek, U.; Lee, J.; Kim, Y.; Choi, M. The Synergistic Effect of Carbon Black/carbon Nanotube Hybrid Fillers on the Physical and Mechanical Properties of EPDM Composites After Exposure to High-pressure Hydrogen Gas. Polymers 2024,16, 1065.
  •  
  • 15. Jung, J. K.; Kim, K. T.; Chung, N. K.; Baek, U. B.; Nahm, S. H. Characterizing the Diffusion Property of Hydrogen Sorption and Desorption Processes in Several Spherical-shaped Polymers. Polymers 2022,14, 1468.
  •  
  • 16. Nishimura, S. Fracture Behaviour of Ethylene Propylene Rubber for Hydrogen Gas Sealing Under High Pressure Hydrogen. Int. Polym. Sci. Technol. 2014,41, 27-34.
  •  
  • 17. Yamabe, J.; Nishimura, S. Hydrogen-induced Degradation of Rubber Seals, in Gaseous Hydrogen Embrittlement of Materials in Energy Technologies. R. P. Gangloff and B. P. Somerday, Eds.: Woodhead Publishing: Sawston, 2012,pp. 12-18.
  •  
  • 18. Aibada, N.; Manickam, R.; Gupta, K.; Raichurkar, P. Review on Various Gaskets Based on the Materials, Their Characteristics and Applications. Int. J. Text. Eng. Process. 2017,3, 12-18.
  •  
  • 19. Barth, R. R.; Simmons, K. L.; San Marchi, C. W. Polymers for Hydrogen Infrastructure and Vehicle Fuel Systems: Applications, Properties and Gap Analysis, Sandia National Laboratories. 2013.
  •  
  • 20. Honselaar, M.; Pasaoglu, G.; Martens, A. Hydrogen Refuelling Stations in the Netherlands: an Intercomparison of Quantitative Risk Assessments Used for Permitting. Int. J. Hydrog. Energy 2018,43, 12278-12294.
  •  
  • 21. Wang, Y.; Pang, Y.; Xu, H.; Martinez, A.; Chen, K. S. PEM Fuel Cell and Electrolysis Cell Technologies and Hydrogen Infrastructure Development – A Review. Energy Environ. Sci. 2022,15, 2288-2328.
  •  
  • 22. Fujiwara, H.; Ono, H.; Onoue, K.; Nishimura, S. High-pressure Gaseous Hydrogen Permeation Test Method-property of Polymeric Materials for High-pressure Hydrogen Devices (1). Int. J. Hydrog. Energy 2020,45, 29082-29094.
  •  
  • 23. Jung, J. K.; Moon, Y. I.; Chung, K. S.; Kim, K.-T. Development of a Program for Analyzing Dielectric Relaxation and Its Application to Polymers: Nitrile Butadiene Rubber. Macromol. Res. 2020,28, 596-604.
  •  
  • 24. Profatilova, I.; Fouda-Onana, F.; Heitzmann, M.; Bacquart, T.; Morris, A.; Warren, J.; Haloua, F.; Jacques, P.-A. Detrimental Impact of Trace Amount of Tetrachlorohexafluorobutane Impurity in Hydrogen on PEM Fuel Cell Performance. Int. J. Hydrog. Energy 2024,65, 837-843.
  •  
  • 25. Menon, N. C.; Kruizenga, A. M.; Alvine, K. J.; San Marchi, C.; Nissen, A.; Brooks, K. Behaviour of Polymers in High Pressure Environments as Applicable to the Hydrogen Infrastructure. Proceedings of the ASME 2016 Pressure Vessels and Piping Conference, Vencourer, Canada, July 17-16, 2016.
  •  
  • 26. Moon, Y. I.; Jung, J. K.; Kim, G. H.; Chung, K. S. Observation of the Relaxation Process in Fluoroelastomers by Dielectric Relaxation Spectroscopy. Phys. B Condens. Matter 2021,608, 412870.
  •  
  • 27. Zhanguo, S. U.; Zhang, W.; Abdulwahab, A.; Saleem, S.; Yao, Y.; Deifalla, A.; Taghavi, M. Comparison of Gasoline and Hydrogen Pathways in Order to Reduce the Environmental Hazards of a Solar-hydrogen Refueling Station: Evaluation Based on Life Cycle Cost and Well-To-Wheel Models. Process Saf. Environ. Prot. 2023,173, 317-331.
  •  
  • 28. Jung, J. K.; Lee, J. H.; Jeon, S. K.; Baek, U. B.; Lee, S. H.; Lee, C. H.; Moon, W. J. H2 Uptake and Diffusion Characteristics in Sulfur-crosslinked Ethylene Propylene Diene Monomer Polymer Composites with Carbon Black and Silica Fillers After High-pressure Hydrogen Exposure Reaching 90 MPa. Polymers 2023,15, 162.
  •  
  • 29. Jung, J. K.; Baek, U. B.; Lee, S. H.; Choi, M. C.; Bae, J. W. Hydrogen Gas Permeation in Peroxide‐crosslinked Ethylene Propylene Diene Monomer Polymer Composites with Carbon Black and Silica Fillers. J. Polym. Sci. 2023,61, 460-471.
  •  
  • 30. Choi, B.-L.; Jung, J. K.; Baek, U. B.; Choi, B.-H. Effect of Functional Fillers on Tribological Characteristics of Acrylonitrile Butadiene Rubber After High-pressure Hydrogen Exposures. Polymers 2022,14, 861.
  •  
  • 31. Lee, C. H.; Jung, J. K.; Jeon, S. K.; Ryu, K. S.; Baek, U. B. Nuclear Magnetic Resonance Study of O-ring Polymer Exposed to High-pressure Hydrogen. J. Magnetics 2017,22, 478-482.
  •  
  • 32. Lee, J. H.; Kim, Y. W.; Jung, J. K. Investigation of the Gas Permeation Properties Using the Volumetric Analysis Technique for Polyethylene Materials Enriched With Pure Gases Under High Pressure: H2, He, N2, O2 and Ar. Polymers 2023,15, 4019.
  •  
  • 33. Lee, J. H.; Kim, Y. W.; Kim, D. J.; Chung, N. K.; Jung, J. K. Comparison of Two Methods for Measuring the Temperature Dependence of H2 Permeation Parameters in Nitrile Butadiene Rubber Polymer Composites Blended with Fillers: the Volumetric Analysis Method and the Differential Pressure Method. Polymers 2024,16, 280.
  •  
  • 34. Lee, J. H.; Kim, Y. W.; Chung, N. K.; Kang, H. M.; Moon, W. J.; Choi, M. C.; Jung, J. K. Multiphase Modeling of Pressure-dependent Hydrogen Diffusivity in Fractal Porous Structures of Acrylonitrile Butadiene Rubber-carbon Black Composites With Different Fillers. Polymer 2024,311, 127552.
  •  
  • 35. Lee, C. H.; Jung, J. K.; Kim, K. S.; Kim, C. J. Hierarchical Channel Morphology in O-rings After Two Cycling Exposures to 70 MPa Hydrogen Gas: a Case Study of Sealing Failure. Sci. Rep. 2024,14, 5319.
  •  
  • 36. Jung, J. K.; Lee, J. H.; Jang, J. S.; Chung, N. K.; Park, C. Y.; Baek, U. B.; Nahm, S. H. Characterization Technique of Gases Permeation Properties in Polymers: H2, He, N2 and Ar Gas. Sci. Rep. 2022,12, 3328.
  •  
  • 37. Moon, Y.; Lee, H.; Jung, J.; Han, H. Direct Visualization of Carbon Black Aggregates in Nitrile Butadiene Rubber by THz Near-field Microscope. Sci. Rep. 2023,13, 7846.
  •  
  • 38. Kim, G. H.; Moon, Y. I.; Jung, J. K.; Choi, M. C.; Bae, J. W. Influence of Carbon Black and Silica Fillers with Different Concentrations on Dielectric Relaxation in Nitrile Butadiene Rubber Investigated by Impedance Spectroscopy. Polymers 2022,14, 155.
  •  
  • 39. Jung, J. K.; Lee, C. H.; Baek, U. B.; Choi, M. C.; Bae, J. W. Filler Influence on H2 Permeation Properties in Sulfur-crosslinked Ethylene Propylene Diene Monomer Polymers Blended With Different Concentrations of Carbon Black and Silica Fillers. Polymers 2022,14, 592.
  •  
  • 40. Huang, Z.; Yang, W.; Zhang, Y.; Yin, J.; Sun, X.; Sun, J.; Ren, G.; Tian, S.; Wang, P.; Wan, H. “Miniaturized Electrochemical Gas Sensor with a Functional Nanocomposite and Thin Ionic Liquid Interface for Highly Sensitive and Rapid Detection of Hydrogen, Anal. Chem. 2024,96, 17960-17968.
  •  
  • 41. Saffell, J. R.; Martin, N. A. Measurements of the Limit of Detection for Electrochemical Gas Sensors. J. Test. Evaluation 2024, 52, 2675-2684.
  •  
  • 42. Seleka, W. M.; Ramohlola, K. E.; Modibane, K. D.; Makhado, E. Conductive Chitosan/polyaniline Hydrogel: a Gas Sensor for Room-temperature Electrochemical Hydrogen Sensing. Int. J. Hydrog. Energy 2024,68, 940-954.
  •  
  • 43. Wang, C.; Yang, J.; Li, J.; Luo, C.; Xu, X.; Qian, F. Solid-state Electrochemical Hydrogen Sensors: A Review. Int. J. Hydrog. Energy 2023, 48, 31377-31391.
  •  
  • 44. Cowen, T.; Grammatikos, S.; Cheffena, M. Molecularly Imprinted Polymer Nanoparticle-carbon Nanotube Composite Electrochemical Gas Sensor for Highly Selective and Sensitive Detection of Methanol Vapour. Analyst 2024,149, 2428-2435.
  •  
  • 45. Mishra, S. R.; Gadore, V.; Ahmaruzzaman, M. Recent Advances in In2S3-based Nanocomposites for Gas and Electrochemical Sensors: Mechanisms and Developments. Mater. Lett.2024, 359, 135946.
  •  
  • 46. Alaghmandfard, A.; Fardindoost, S.; Frencken, A. L.; Hoorfar, M. The Next Generation of Hydrogen Gas Sensors Based on Transition Metal Dichalcogenide-metal Oxide Semiconductor Hybrid Structures. Ceram. Int. 2024,50, 29026-29043.
  •  
  • 47. Kwon, S.-K.; Kim, J.-N.; Byun, H.-G.; Kim, H.-J. Low-power and Cost-effective Readout Circuit Design for Compact Semiconductor Gas Sensor Systems. Electrochem. Commun. 2024,169, 107834.
  •  
  • 48. Li, Y.; Yuan, Z.; Ji, H.; Meng, F.; Wang, H. Response Surface Method Analysis of Gas-sensitive Properties: Investigating the Influence of External Environment on the Performance of Semiconductor Gas Sensors. IEEE Trans. Ind. Electron. 2024,71, 11661-11670.
  •  
  • 49. Xie, R.; Guan, S.; Tan, Z. A Gas Sensor Scheme for CO Based on Optical-feedback Linear-cavity Enhanced Absorption Spectroscopy. Opt. Commun. 2025,574, 131105.
  •  
  • 50. Basso, M.; Paolucci, V.; Ricci, V.; Colusso, E.; Cattelan, M.; Napolitani, E.; Cantalini, C.; Martucci, A. Sol-Gel Pt-VO2 Films as Selective Chemoresistive and Optical H2 Gas Sensors. ACS Appl. Mater. Interfaces 2024,16, 57558-57570.
  •  
  • 51. Zhang, X.; Ojha, B.; Bichlmaier, H.; Hartmann, I.; Kohler, H. Extensive Gaseous Emissions Reduction of Firewood-fueled Low Power Fireplaces by a Gas Sensor Based Advanced Combustion Airflow Control System and Catalytic Post-oxidation. Sensors 2023,23, 4679.
  •  
  • 52. Del Orbe Henriquez, D.; Cho, I.; Yang, H.; Choi, J.; Kang, M.; Chang, K. S.; Jeong, C. B.; Han, S. W.; Park, I. Pt Nanostructures Fabricated by Local Hydrothermal Synthesis for Low-power Catalytic-combustion Hydrogen Sensors, ACS Appl. Nano Mater. 2020,4, 7-12.
  •  
  • 53. Tamura, S.; Imanaka, N. Low-temperature Operable Catalytic Combustion-type CO Gas Sensors. Bunseki Kagaku 2021,70, 327-334.
  •  
  • 54. Wang, M.; Liu, J.; Bai, Y.; Zheng, D.; Fang, L. Flow Rate Measurement of Gas-liquid Annular Flow Through a Combined Multimodal Ultrasonic and Differential Pressure Sensor. Energy 2024,288, 129852.
  •  
  • 55. Shi, X.; Tan, C.; Dong, F. Oil–gas–water Three-phase Flow Pattern Identification Through Parallel Decision Trees With Differential Pressure and Ultrasonic Sensors. IEEE Trans. Instrum. Meas. 2024, 73, 7508515.
  •  
  • 56. Yang, Q.; Jin, N.; Deng, Y.; Wang, D. Water Holdup Measurement of Gas-liquid Flows Using Distributed Differential Pressure Sensors. IEEE Sens. J. 2021, 21, 2149-2158.
  •  
  • 57. Deng, Y.-R.; Jin, N.-D.; Yang, Q.-Y.; Wang, D.-Y. A Differential Pressure Sensor Coupled with Conductance Sensors to Evaluate Pressure Drop Prediction Models of Gas-water Two-phase Flow in a Vertical Small Pipe. Sensors 2019,19, 2723.
  •  
  • 58. Jung, J. K.; Kim, I. G.; Chung, K. S.; Kim, Y.-I.; Kim, D. H. Determination of Permeation Properties of Hydrogen Gas in Sealing Rubbers Using Thermal Desorption Analysis Gas Chromatography. Sci. Rep. 2021,11, 17092.
  •  
  • 59. Jung, J. K.; Kim, I. G.; Chung, K. S.; Baek, U. B. Gas Chromatography Techniques to Evaluate the Hydrogen Permeation Characteristics in Rubber: Ethylene Propylene Diene Monomer. Sci. Rep. 2021,11, 4859.
  •  
  • 60. Jung, J. K.; Kim, K.-T.; Chung, K. S. Two Volumetric Techniques for Determining the Transport Properties of Hydrogen Gas in Polymer. Mater. Chem. Phys. 2022,276, 125364.
  •  
  • 61. Slater, R.; Tharmaratnam, K.; Belnour, S.; Auth, M. K.-H.; Muhammed, R.; Spray, C.; Wang, D.; de Lacy Costello, B.; García-Fiñana, M.; Allen, S.; Probert, C. Gas Chromatography-sensor System Aids Diagnosis of Inflammatory Bowel Disease, and Separates Crohn's From Ulcerative Colitis, in Children. Sensors 2024,24, 5079.
  •  
  • 62. Jung, J. K.; Kim, I. G.; Kim, K. T.; Ryu, K. S.; Chung, K. S. Evaluation Techniques of Hydrogen Permeation in Sealing Rubber Materials. Polym. Test. 2021,93, 107016.
  •  
  • 63. Hardoyono, F.; Windhani, K. Combination of Metal Oxide Semiconductor Gas Sensor Array and Solid‐phase Microextraction Gas Chromatography–mass Spectrometry for Odour Classification of Brewed Coffee. Flavour Fragr. J. 2023,38, 451-463.
  •  
  • 64. Kendler, R.; Dreisbach, F.; Seif, R.; Pollak, S.; Petermann, M. Method for Estimating Vapour Pressures Based on Thermogravimetric Measurements With a Magnetic Suspension Balance. Thermochim. Acta 2018,664, 128-135.
  •  
  • 65. Schabel, W.; Scharfer, P.; Kind, M.; Mamaliga, I. Sorption and Diffusion Measurements in Ternary Polymer–solvent–solvent Systems by Means of a Magnetic Suspension Balance—Experimental Methods and Correlations with a Modified Flory–Huggins and Free-volume Theory. Chem. Eng. Sci. 2007,62, 2254-2266.
  •  
  • 66. Jung, J. K.; Kim, I. G.; Jeon, S. K.; Chung, K. S. Characterizing the Hydrogen Transport Properties of Rubbery Polymers by Gravimetric Analysis. Rubber Chem. Technol. 2021, 94, 688-703.
  •  
  • 67. Zhu, X.; Ahmed, W.; Schmidt, K.; Barroso, R.; Fowler, S. J.; Blanford, C. F. Validation of An Electronic VOC Sensor Against Gas Chromatography–mass Spectrometry. IEEE Trans. Instrum. Meas. 2024,73, 1-8.
  •  
  • 68. Quercia, L.; Khomenko, I.; Capuano, R.; Tonezzer, M.; Paolesse, R.; Martinelli, E.; Catini, A.; Biasioli, F.; Di Natale, C. Optimization of Gas Sensors Measurements by Dynamic Headspace Analysis Supported by Simultaneous Direct Injection Mass Spectrometry. Sens. Actuators B Chem. 2021, 347, 130580.
  •  
  • 69. Shaltaeva, Y. R.; Podlepetsky, B. I.; Pershenkov, V. S. Detection of Gas Traces Using Semiconductor Sensors, Ion Mobility Spectrometry, and Mass Spectrometry. Eur. J. Mass Spectrom. 2017,23, 217-224.
  •  
  • 70. Imonigie, J. A.; Walters, R. N.; Gribb, M. M. Rapid Isothermal Gas Chromatography‐mass Spectrometry Method for Validating a Small Ion Mobility Spectrometer Sensor. Instrum. Sci. Technol. 2006,34, 677-695.
  •  
  • 71. Pérès, C.; Begnaud, F.; Berdagué, J.-L. Standard Gas Addition:  a Calibration Method for Handling Temporal Drifts of Mass Spectrometry-based Sensors. Anal. Chem. 2002,74, 2279-2283.
  •  
  • 72. Lee, J. H.; Jung, J. K. Development of Image-based Water Level Sensor with High-resolution and Low-cost Using Image Processing Algorithm: Application to Outgassing Measurements From Gas-enriched Polymer. Sensors 2024,24, 7699.
  •  
  • 73. Jung, J. K.; Kim, I. G.; Jeon, S. K.; Kim, K.-T.; Baek, U. B.; Nahm, S. H. Volumetric Analysis Technique for Analyzing the Transport Properties of Hydrogen Gas in Cylindrical-shaped Rubbery Polymers. Polym. Test. 2021,99, 107147.
  •  
  • 74. Jung, J. K.; Lee, J. H.; Jeon, S. K.; Tak, N. H.; Chung, N. K.; Baek, U. B.; Lee, S. H.; Lee, C. H.; Choi, M. C.; Kang, H. M.; Bae, J. W.; Moon, W. J. Correlations Between H2 Permeation and Physical/mechanical Properties in Ethylene Propylene Diene Monomer Polymers Blended with Carbon Black and Silica Fillers. Int. J. Molecul. Sci. 2023, 24, 2865.
  •  
  • 75. Jung, J. K.; Kim, K.-T.; Baek, U. B. Simultaneous Three-channel Measurements of Hydrogen Diffusion with Light Intensity Analysis of Images by Employing Webcam. Current Appl. Phys. 2022,37, 19-26.
  •  
  • 76. Karpeles, R.; Grossi, A. V. “EPDM Rubber Technology,”in Handbook of Elastomers, CRC Press, 2000,863-894.
  •  
  • 77. Jung, J. K. Review of Developed Methods for Measuring Gas Uptake and Diffusivity in Polymers Enriched by Pure Gas Under High Pressure. Polymers 2024, 16, 723.
  •  
  • 78. Jung, J. K.; Kim, K. T.; Baek, U. B.; Nahm, S. H. Volume Dependence of Hydrogen Diffusion for Sorption and Desorption Processes in Cylindrical-shaped Polymers. Polymers 2022, 14, 756.
  •  
  • 79. Jung, J. K.; Jeon, S. K.; Kim, K.-T.; Lee, C. H.; Baek, U. B.; Chung, K. S. Impedance Spectroscopy for In Situ and Real-time Observations of the Effects of Hydrogen on Nitrile Butadiene Rubber Polymer Under High Pressure. Sci. Rep. 2019,9, 13035.
  •  
  • 80. Jung, J. K.; Moon, Y. I.; Chung, K. S. Dielectric Relaxation in a Fluoroelastomer and Ethylene Propylene Diene Monomer Observed by Using Impedance Spectroscopy. J. Korean Phys. Soc. 2020, 76, 416-425.
  •  
  • 81. Jung, J. K.; Lee, J. H.; Kim, Y. W.; Chung, N. K. Development of Portable Gas Sensing System for Measuring Gas Emission Concentration and Diffusivity Using Commercial Manometric Sensors in Gas Exposed Polymers: Application to Pure Gases, H2, He, N2, O2 and Ar. Sensors Actuators B Chem. 2024,418, 136240.
  •  
  • 82. Jung, J. K.; Lee, C. H.; Son, M. S.; Lee, J. H.; Baek, U. B.; Chung, K. S.; Choi, M. C.; Bae, J. W. Filler Effects on H2 Diffusion Behavior in Nitrile Butadiene Rubber Blended with Carbon Black and Silica Fillers of Different Concentrations. Polymers 2022,14, 700.
  •  
  • 83. Crank, J. The Mathematics of Diffusion, Oxford: Clarendon Press, 1979.
  •  
  • 84. Sander, R. Compilation of Henry's Law Constants (version 4.0) for Water as Solvent. Atmos. Chem. Phys. 2015,15, 4399-4981.
  •  
  • 85. Lee, C. H.; Park, S.-H.; Jung, J. K.; Ryu, K.-S.; Nahm, S. H.; Kim, J.; Chen, Y. 11B Nuclear Magnetic Resonance Study of Boron Nitride Nanotubes Prepared by Mechano-thermal Method. Solid State Commun. 2005,134, 419-423.
  •  
  • 86. Jung, J. K.; Kim. K. T.; Lee, J. H.; Baek, U. B. Effective and Low-cost Gas Sensor Based on a Light Intensity Analysis of a Webcam Image: Gas Enriched Polymers Under High Pressure. Sensors Actuators B Chem. 2023,393, 134258.
  •  
  • 87. Do, D. D.; Do, H. D.; Tran, K. N. Analysis of Adsorption of Gases and Vapors on Nonporous Graphitized Thermal Carbon Black. Langmuir 2003,19, 5656-5668.
  •  
  • 88. Jung, J. K.; Faisal, A.; Lee, Y. S.; Kim, K.-T. Calibration of Voltage Transformer Test Set Using an Error Simulator. Meas. Sci. Technol. 2015,26, 095004.
  •  
  • 89. Jung, J. K.; Faisal, A.; Lee, Y. S.; Kim, K.-T. Fabrication of Capacitor–resistor Bank for Calibrating Commercial Capacitance and Tan δ Measuring Bridges. IEEE Trans. Instrum. Meas. 2015,64, 1564-1569.
  •  
  • 90. Jung, J. K.; So, E.; Lee, S. H.; Bennett, D. Comparison of Systems Between KRISS and NRC to Evaluate the Performance Characteristics of a 400-kV Capacitive Voltage Divider. IEEE Trans. Instrum. Meas. 2011,60, 2634-2641.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2024 Impact Factor : 0.6
  • Indexed in SCIE

This Article

  • 2025; 49(5): 650-661

    Published online Sep 25, 2025

  • 10.7317/pk.2025.49.5.650
  • Received on Apr 14, 2025
  • Revised on Jun 4, 2025
  • Accepted on Jun 6, 2025

Correspondence to

  • Ji Hun Lee
  • *Hydrogen Energy Group, Strategic Technology Research Institute, Korea Research Institute of Standards and Science, Daejeon 34113, Korea
    **Department of Measurement Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea

  • E-mail: ljh93@kriss.re.kr