• Ductility-Enhanced UHMWPP Composites via Surface-Modified Cellulose: Comparative Effects of Urethane and Ester Functionalization
  • Ju-Hong Lee, Jae-Ryong Lee, Won-Bin Lim, Jin-Gyu Min, Ji-Won Lee, Ji-Hong Bae*,† , and PilHo Huh

  • Department of Polymer Science and Engineering, Pusan National University, Busan 609-735, Korea
    *Research Institute of Industrial Technology, Pusan National University, Busan 609-735, Korea

  • 표면 개질 셀룰로오스를 활용한 연신율 향상 초고분자량 폴리프로필렌 복합체: 우레탄 및 에스터기의 비교 연구
  • 이주홍 ·이재룡 ·임원빈 ·민진규 ·이지원 ·배지홍*,† ·허필호

  • 부산대학교 응용화학공학부, *부산대학교 생산기술연구소

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.


References
  • 1. Mishra, R. K.; Sabu, A.; Tiwari, S. K. Materials Chemistry and the Futurist Eco-friendly Applications of Nanocellulose: Status and Prospect. J. Saudi Chem. Soc. 2018, 22, 949-978.
  •  
  • 2. Khalid, M. Y.; Rashid, A.; Arif, Z. U.; Ahmed, W.; Arshad, H. Recent Advances in Nanocellulose-based Different Biomaterials: Types, Properties, and Emerging Applications. J. Mater. Res. Technol. 2021, 14, 2601-2623.
  •  
  • 3. Patel, K.; Chikkali, S. H.; Sivaram, S. Ultrahigh Molecular Weight Polyethylene: Catalysis, Structure, Properties, Processing and Applications. Prog. Polym. Sci. 2020, 109, 101290.
  •  
  • 4. Kisa, T.; Kimura, T.; Eno, A.; Janchai, K.; Yamaguchi, M.; Otsuki, Y.; Kimura, T.; Mizukawa, T.; Murakami, T.; Hato, K.; Okawa, T. Effect of Ultra-High-Molecular-Weight Molecular Chains on the Morphology, Crystallization, and Mechanical Properties of Polypropylene. Polymers 2021, 13, 4222.
  •  
  • 5. Jiang, X.; Bin, Y.; Kikyotani, N.; Matsuo, M. Thermal, Electrical and Mechanical Properties of Ultra-high Molecular Weight Polypropylene and Carbon Filler Composites. Polym. J. 2006, 38, 419-431.
  •  
  • 6. An, Y.; Gu, L.; Wang, Y.; Li, Y. M.; Xie, B. H.; Yang, M. B. Morphologies of Injection Molded Isotactic Polypropylene/ultra High Molecular Weight Polyethylene Blends. Mater. Design 2011, 35, 633-639.
  •  
  • 7. Ohta, T.; Ikeda, Y.; Kishimoto, M.; Sakamoto, Y.; Kawamura, H.; Asaeda, E. The Ultra-drawing Behaviour of Ultra-high-molecular-weight Polypropylene in the Gel-like Spherulite Press Method: Influence of Solution Concentration. Polymer 1998, 39, 4739-4800.
  •  
  • 8. Kim, B. G.; Gavande, B.; Jeong, M. K.; Kim, M. H.; Lee, W. K. Properties of Blends of Ultra-high Molecular Weight Polypropylene with Various Low Molecular Weight Polypropylenes. Mol. Cryst. Liq. Cryst. 2023, 762, 63-70.
  •  
  • 9. Kanamoto, T.; Tsuruta, A.; Tanaka, K.; Takeda, M. Ultra-High Modulus and Strength Films of High Molecular Weight Polypropylene Obtained by Drawing of Single Crystal Mats. Polym. J. 1984, 16, 75-79.
  •  
  • 10. Yun, J. H.; Jeon, Y. J.; Kang, M. S. Prediction of the Elastic Properties of Ultra High Molecular-Weight Polyethylene Particle-Reinforced Polypropylene Composite Materials through Homogenization. Appl. Sci. 2022, 12, 7699.
  •  
  • 11. Bhattacharya, A. B.; Raju, A. T.; Chatterjee, T.; Naskar, K. Development and Characterizations of Ultra-high Molecular Weight EPDM/PP Based TPV Nanocomposites for Automotive Applications. Polym. Compos. 2020, 41, 4950-4962.
  •  
  • 12. Daniel, B.; Peder, S.; Kristina O. N. All Cellulose Nanocomposites Produced by Extrusion, J. Biobased Mater. Bioenergy 2007, 1, 367-371.
  •  
  • 13. Jie, G.; Jun, L.; Jun, X.; Zhouyang, X.; Lihuan, M. Research on Cellulose Nanocrystals Produced From Cellulose Sources with Various Polymorphs, RSC Advances 2017, 7, 33486.
  •  
  • 14. Sonakshi, M.; Jayaramudu, J.; Kunal, D.; Silva, M. R.; Rotimi, S.; Suprakas, S. R.; Dagang, L. Preparation and Characterization of Nano-cellulose with New Shape from Different Precursor. Carbohydr. Polym. 2013, 98, 562-567.
  •  
  • 15. Ryu, J. H.; Youn, H. J. Effect of Sulfuric Acid Hydrolysis Condition on Yield, Particle Size and Surface Charge of Cellulose Nanocrystals. J. Korea TAPPI 2011, 43.
  •  
  • 16. Fleur, R.; Bruno, V.; Nadia, E. K.; Julien, B. Nanocellulose Production by Twin-Screw Extrusion: Simulation of the Screw Profile To Increase the Productivity. Sustainable Chem. Eng. 2020, 8, 50-59.
  •  
  • 17. Thao, T. T. H.; Kentaro, A.; Tanja, Z.; Hiroyuki, Y. Nanofibrillation of Pulp Fibers by Twin-screw Extrusion. Cellulose, 2015, 22, 421-433.
  •  
  • 18. Wenshuai, H.; Mingzheng, W.; Fengshan, Z.; Huize, L.; Xin, X.; Faliang, L.; Ruitao, C. A Review on Nanocellulose as a Lightweight Filler of Polyolefin Composites. Carbohydr. Polym. 2020, 243, 116466.
  •  
  • 19. Cho, E. H.; Kim, Y. H. A Study on the Compatibility of Nanocellulose-LDPE Composite. Clean Technol. 2021, 27, 124-131.
  •  
  • 20. Lee, S. W.; Lee, Y. H.; Jho, J. Y. Polypropylene Composite with Aminated Cellulose Nanocrystal. Polym. Korea 2020, 44, 734-740.
  •  
  • 21. Andresen, M.; Johansson, L. S.; Tanem, B. S.; Stenius, P. Properties and Characterization of Hydrophobized Microfibrillated Cellulose. Cellulose 2006, 13, 665-677.
  •  
  • 22. Reverdy, C.; Belgacem, N.; Moghaddam, M. S.; Sundin, M.; Swerin, A.; Baras, J. One-step Superhydrophobic Coating Using Hydrophobized Cellulose Nanofibrils. Colloids Surf. A Physicochem. Eng. Asp. 2018, 544, 152-158.
  •  
  • 23. Nigmatullin, R.; Johns, M. A.; Muñoz-García, J. C.; Gabrielli, V.; Schmitt, J.; Angulo, J.; Khimyak, J. A.; Scott, J. L.; Edier, K. J.; Eichhorn, S. J. Hydrophobization of Cellulose Nanocrystals for Aqueous Colloidal Suspensions and Gels. Biomacromolecules 2020, 21, 1812-1823.
  •  
  • 24. Cichosz, S.; Masek, A. Cellulose Fibers Hydrophobization via a Hybrid Chemical Modification. Polymers 2019, 11, 1174.
  •  
  • 25. Sabzalian, Z.; Alam, M. N.; Van de Ven, T. G. M. Hydrophobization and Characterization of Internally Crosslink-reinforced Cellulose Fibers. Cellulose 2014, 21, 1381-1393.
  •  
  • 26. Chang, C.; Zhang, L. Cellulose-based Hydrogels: Present Status and Application Prospects. Carbohydr. Polym. 2011, 84, 40-53.
  •  
  • 27. Demirbas, A. Biomass Resource Facilities and Biomass Conversion, Processing for Fuels and Chemicals. Energy Convers. Manage. 2001, 42, 1357-1378.
  •  
  • 28. Klemm, D.; Heublein, B.; Fink, H.-P.; Bohn, A. Cellulose: Fascinating biopolymer and dustainable raw material. Angew. Chem., Int. Ed. 2005, 44, 3358-3393.
  •  
  • 29. Ma, F.; Hanna, M. A. Biodiesel Production: A Review. Bioresour. Technol. 1999, 70, 1-15.
  •  
  • 30. Rooney, M. L. Interesterification of Starch with Methyl Palmitate. Polymer. 1976, 17, 555-558.
  •  
  • 31. Ferreira, L.; Gil, M. H.; Dordick, J. S. Enzymatic Synthesis of Dextran-containing Hydrogels. Biomaterials. 2002, 23, 3957-3967.
  •  
  • 32. Dicke, R. A Straight Way to Regioselectively Functionalized Polysaccharide Esters. Cellulose. 2004, 11, 255-263.
  •  
  • 33. Heinze, T.; Dicke, R.; Koschella, A.; Kull, A. H.; Klohr, E. A.; Koch, W. Effective Preparation of Cellulose Derivatives in a New Simple Cellulose Solvent. Macromol. Chem. Phys. 2000, 201, 627-631.
  •  
  • 34. Xie, J.; Hsieh, Y.-L. Enzyme-catalyzed Transesterification of Vinyl Esters on Cellulose Solids. J. Polym. Sci. Part A: Polym. Chem. 2001, 39, 1931-1939.
  •  
  • 35. Çetin, N. S.; Tingaut, P.; Özmen, N.; Henry, N.; Harper, D.; Dadmun, M.; Sebe, G. Acetylation of Cellulose Nanowhiskers with vinyíacetate under moderate conditions. Macromol. Biosci. 2009, 9, 997-1003.
  •  
  • 36. Meher, L. C.; Vidya Sagar, D.; Naik, S. N. Technical Aspects of Biodiesel Production by Transesterification-A Review. Renewable Sustainable Energy Rev. 2006, 10, 248-268.
  •  
  • 37. Adachi, S.; Kobayashi, T. Synthesis of Esters by Immobilized Lipase Catalyzed Condensation Reaction of Sugars and Fatty Acids in Watermiscible Organic Solvent. J. Biosci. Bioeng. 2005, 99, 87-94.
  •  
  • 38. Liu, Y.; Hu, H. X-ray Diffraction Study of Bamboo Fibers Treated with NaOH. Fibers Polym. 2008, 9, 735-739.
  •  
  • 39. Schilling, M.; Bouchard, M.; Khanjian, H.; Learner, T.; Phenix, A.; Rivenc, R. Application of Chemical and Thermal Analysis Methods for Studying Cellulose Ester Plastics. Acc. Chem. Res. 2010, 43, 888-896.
  •  
  • 40. Maim, C. J.; Mench, J. W.; Kendall, D. L.; Hiatt, G. D. Aliphatic Acid Esters of Cellulose: Properties. Ind. Eng. Chem. 1951, 43, 688-691.
  •  
  • 41. Karim, M.; Mohamed, N. B.; Julien, B. Nanofibrillated Cellulose Surface Modification: A Review. Materials. 2013, 6, 1745-1766.
  •  
  • 42. Siqueira, G.; Bras, J.; Dufresne, A. Luffa Cylindrica as a Lignocellulosic Source of Fiber, Microfibrillated Cellulose, and Cellulose Nanocrystals. BioResources. 2010, 5, 727-740.
  •  
  • 43. Lavoine, N.; Desloges, I.; Dufresne, A.; Bras, J. Microfibrillated Cellulose—Its Barrier Properties and Applications in Cellulosic Materials: A Review. Carbohydr. Polym. 2012, 90, 735-764.
  •  
  • 44. Henriksson, M.; Henriksson, G.; Berglund, L. A.; Lindström, T. An Environmentally Friendly Method for Enzyme-assisted Preparation of Microfibrillated Cellulose (MFC) Nanofibers. Eur. Polym. J. 2007, 43, 3434-3441.
  •  
  • 45. Werbowyj, R. S.; Gray, D. G. Mol. Cryst. Liq. Cryst. 1976, 34, 97-103.
  •  
  • 46. Siqueira, G.; Tapin-Lingua, S.; Bras, J.; da Silva Perez, D.; Dufresne, A. Morphological Investigation of Anoparticles Obtained from Combined Mechanical Shearing, and Enzymatic and Acid Hydrolysis of Sisal Fibers. Cellulose. 2010, 17, 1147-1158.
  •  
  • 47. Bulota, M.; Kreitsmann, K.; Hughes, M.; Paltakari, J. Acetylated Microfibrillated Cellulose as a Toughening Agent in Poly(lactic acid). Appl. Polym. 2012, 126, E449-E458.
  •  
  • 48. Ortega, H. O.; Reixach, R.; Espinach, F. X.; Mendez, J. A. Maleic Anhydride Polylactic Acid Coupling Agent Prepared from Solvent Reaction: Synthesis, Characterization and Composite Performance. Materials. 2022, 15, 1161.
  •  
  • 49. Demir, H.; Atikler, U.; Balkose, D.; Tuhminlioglu, F. The Effect of Fiber Surface Treatments on the Tensile and Water Sorption Properties of Polypropylene–luffa Fiber Composites. Compos. Part A Appl. Sci. Manuf. 2006, 37, 447-456.
  •  
  • 50. Pinheiro, I. F.; Ferreira, F. V.; Souza, R. F.; Gouveia, R. F.; Lona, L. M. F.; Morales, A. R.; Mei, L. H. I. Mechanical, Rheological and Degradation Properties of PBAT Nanocomposites Reinforced by Functionalized Cellulose Nanocrystals. Europ. Polym. J. 2017, 97, 356-365.
  •  
  • 51. Cao, X.; Sun, S.; peng, X.; Zhong, L.; Sun, R.; Jiang, D. Rapid Synthesis of Cellulose Esters by Transesterification of Cellulose with Vinyl Esters under the Catalysis of NaOH or KOH in DMSO. J. Agric. Food Chem. 2013, 61, 2489-2495.
  •  
  • 52. Liu, Y.; Wang, B.; Chen, J.; Zhu, M.; Jiang, Z. Flexible Nanofiber Pressure Sensors with Hydrophobic Properties for Wearable Electronics. Materials. 2024, 17, 2463.
  •  
  • 53. Jang, N. S.; Noh, C. H.; Kim, Y. H.; Yang, H. J.; Lee, H. G.; Oh, H. S. Evaluation of a Hydrophobic Coating Agent Based on Cellulose Nanofiber and Alkyl Ketone Dimer. Materials. 2023, 16, 4216.
  •  
  • 54. Siró, I.; Plackett, D. Microfibrillated Cellulose and New Nanocomposite Materials: A Review. Cellulose 2010, 17, 459-494.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2024 Impact Factor : 0.6
  • Indexed in SCIE

This Article

  • 2025; 49(6): 700-708

    Published online Nov 25, 2025

  • 10.7317/pk.2025.49.6.700
  • Received on Jan 23, 2025
  • Revised on Jun 15, 2025
  • Accepted on Jul 6, 2025

Correspondence to

  • Ji-Hong Bae* , and PilHo Huh
  • Department of Polymer Science and Engineering, Pusan National University, Busan 609-735, Korea
    *Research Institute of Industrial Technology, Pusan National University, Busan 609-735, Korea

  • E-mail: jhbae@pusan.ac.kr, pilho.huh@pusan.ac.kr