• Three Channel Simultaneous Volumetric Hydrogen Emission Measurement System for Rubber-Based Materials Using Transparent Coaxial Cylindrical Capacitive Electrodes
  • Ji Hun Lee and Hee Soo Yun

  • Hydrogen energy group, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea

  • 투명한 동축 원통형 커패시턴스 전극을 이용한 세 채널 동시 고무 재료 기반 수소 방출 부피 측정 시스템
  • 이지훈 · 윤희수

  • 한국표준과학연구원 수소에너지그룹

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.


References
  • 1. Xie, H.; Yu, Q.; Lu, H.; Zhang, Y.; Zhang, J.; Qin, Q. Thermodynamic Study for Hydrogen Production from Bio-Oil via Sorption-Enhanced Steam Reforming: Comparison with Conventional Steam Reforming. Int. J. Hydrog. Energy 2017, 42, 28718-28731.
  •  
  • 2. Dell, R. M. Hydrogen as an Energy Vector in the 21st Century. In Electrochemistry in Research and Development; Kalvoda, R., Parsons, R., Eds.; Springer: Boston, 1985; pp 73-93.
  •  
  • 3. Jung, J. K.; Kim, I. G.; Chung, K. S.; Baek, U. B. Analyses of Permeation Characteristics of Hydrogen in Nitrile Butadiene Rubber Using Gas Chromatography. Mater. Chem. Phys. 2021, 267, 124653.
  •  
  • 4. Wang, Z.; Li, Z.; Jiang, T.; Xu, X.; Wang, C. Ultrasensitive Hydrogen Sensor Based on Pd(0)-Loaded SnO₂ Electrospun Nanofibers at Room Temperature. ACS Appl. Mater. Interfaces 2013, 5, 2013-2021.
  •  
  • 5. Jung, J. K.; Lee, J. H. High-Performance Hydrogen Gas Sensor System Based on Transparent Coaxial Cylinder Capacitive Electrodes and a Volumetric Analysis Technique. Sci. Rep. 2024, 14, 1967.
  •  
  • 6. Ma, C.; Wang, A. Optical Fiber Tip Acoustic Resonator for Hydrogen Sensing. Opt. Lett. 2010, 35, 2043-2045.
  •  
  • 7. Haija, M. A.; Ayesh, A. I.; Ahmed, S.; Katsiotis, M. S. Selective Hydrogen Gas Sensor Using CuFe2O4 Nanoparticle-Based Thin Film. Appl. Surf. Sci. 2016, 369, 443-447.
  •  
  • 8. Li, Z.; Yao, Z.; Haidry, A. A.; Plecenik, T.; Xie, L.; Sun, L.; Fatima, Q. Resistive-Type Hydrogen Gas Sensor Based on TiO2: A Review. Int. J. Hydrog. Energy 2018, 43, 21114-21132.
  •  
  • 9. Liu, N.; Tang, M. L.; Hentschel, M.; Giessen, H.; Alivisatos, A. P. Nanoantenna-Enhanced Gas Sensing in a Single Tailored Nanofocus. Nat. Mater. 2011, 10, 631-636.
  •  
  • 10. Wang, Z.; Hu, Y.; Wang, W.; Zhang, X.; Wang, B.; Tian, H.; Wang, Y.; Guan, J.; Gu, H. Fast and Highly-Sensitive Hydrogen Sensing of Nb₂O₅ Nanowires at Room Temperature. Int. J. Hydrog. Energy 2012, 37, 4526-4532.
  •  
  • 11. Kang, H. M.; Choi, M. C.; Lee, J. H.; Yun, Y. M.; Jang, J. S.; Chung, N. K.; Jeon, S. K.; Jung, J. K.; Lee, J. H.; Lee, J. H.; Chang, Y. W.; Bae, J. W. Effect of the High-Pressure Hydrogen Gas Exposure in the Silica-Filled EPDM Sealing Composites with Different Silica Content. Polymers 2022, 14, 1151.
  •  
  • 12. Jung, J. K.; Kim, I. G.; Kim, K. T. Evaluation of Hydrogen Permeation Characteristics in Rubbery Polymers. Curr. Appl. Phys. 2021, 21, 43-49.
  •  
  • 13. Jung, J. K.; Kim, I. G.; Kim, K. T.; Baek, U. B.; Nahm, S. H. Novel Volumetric Analysis Technique for Characterizing the Solubility and Diffusivity of Hydrogen in Rubbers. Curr. Appl. Phys. 2021, 26, 9-15.
  •  
  • 14. Kang, H.; Bae, J.; Lee, J.; Yun, Y.; Jeon, S.; Chung, N.; Jung, J.; Baek, U.; Lee, J.; Kim, Y.; Choi, M. The Synergistic Effect of Carbon Black/Carbon Nanotube Hybrid Fillers on the Physical and Mechanical Properties of EPDM Composites after Exposure to High-Pressure Hydrogen Gas. Polymers 2024, 16, 1065.
  •  
  • 15. Jung, J. K.; Kim, K. T.; Chung, N. K.; Baek, U. B.; Nahm, S. H. Characterizing the Diffusion Property of Hydrogen Sorption and Desorption Processes in Several Spherical-Shaped Polymers. Polymers 2022, 14, 1468.
  •  
  • 16. Nishimura, S. Fracture Behaviour of Ethylene Propylene Rubber for Hydrogen Gas Sealing under High Pressure Hydrogen. Int. Polym. Sci. Technol. 2014, 41, 27-34.
  •  
  • 17. Yamabe, J.; Nishimura, S. Hydrogen-Induced Degradation of Rubber Seals. In Gaseous Hydrogen Embrittlement of Materials in Energy Technologies; Gangloff, R. P., Somerday, B. P., Eds.; Woodhead Publishing: Swaston, 2012; pp 12-18.
  •  
  • 18. Aibada, N.; Manickam, R.; Gupta, K.; Raichurkar, P. Review on Various Gaskets Based on the Materials, Their Characteristics, and Applications. Int. J. Text. Eng. Process. 2017, 3, 12-18.
  •  
  • 19. Barth, R. R.; Simmons, K. L.; Marchi, C. W. S. Polymers for Hydrogen Infrastructure and Vehicle Fuel Systems: Applications, Properties and Gap Analysis; Sandia National Laboratories, 2013.
  •  
  • 20. Honselaar, M.; Pasaoglu, G.; Martens, A. Hydrogen Refuelling Stations in the Netherlands: An Intercomparison of Quantitative Risk Assessments Used for Permitting. Int. J. Hydrog. Energy 2018, 43, 12278-12294.
  •  
  • 21. Wang, Y.; Pang, Y.; Xu, H.; Martinez, A.; Chen, K. S. PEM Fuel Cell and Electrolysis Cell Technologies and Hydrogen Infrastructure Development - A Review. Energy Environ. Sci. 2022, 15, 2288-2328.
  •  
  • 22. Fujiwara, H.; Ono, H.; Onoue, K.; Nishimura, S. High-Pressure Gaseous Hydrogen Permeation Test Method - Property of Polymeric Materials for High-Pressure Hydrogen Devices (1). Int. J. Hydrog. Energy 2020, 45, 29082-29094.
  •  
  • 23. Jung, J. K.; Moon, Y. I.; Chung, K. S.; Kim, K. T. Development of a Program for Analyzing Dielectric Relaxation and Its Application to Polymers: Nitrile Butadiene Rubber. Macromol. Res. 2020, 28, 596.
  •  
  • 24. Profatilova, I.; Fouda-Onana, F.; Heitzmann, M.; Haloua, F.; Jacques, P.-A. Detrimental Impact of Trace Amount of Tetrachlorohexafluorobutane Impurity in Hydrogen on PEM Fuel Cell Performance. Int. J. Hydrog. Energy 2024, 65, 837-843.
  •  
  • 25. Menon, N. C.; Kruizenga, A. M.; Alvine, K. J.; Nissen, A.; Brooks, K. Behaviour of Polymers in High-Pressure Environments as Applicable to the Hydrogen Infrastructure. Proceedings of the ASME 2016 Pressure Vessels and Piping Conference. Volume 6B: Materials and Fabrication. Vancouver, British Columbia, Canada. July 17-21, 2016. V06BT06A037.
  •  
  • 26. Moon, Y. I.; Jung, J. K.; Kim, G. H.; Chung, K. S. Observation of the Relaxation Process in Fluoroelastomers by Dielectric Relaxation Spectroscopy. Phys. B Condens. Matter 2021, 608, 412870.
  •  
  • 27. Su, Z.; Zhang, W.; Abdulwahab, A.; Deifalla, A.; Taghavi, M. Comparison of Gasoline and Hydrogen Pathways in Order to Reduce the Environmental Hazards of a Solar-Hydrogen Refueling Station: Evaluation Based on Life Cycle Cost and Well-To-Wheel Models. Process Saf. Environ. Prot. 2023, 173, 317-331.
  •  
  • 28. Jung, J. K.; Lee, J. H.; Jeon, S. K.; Lee, C. H.; Moon, W. J. H2 Uptake and Diffusion Characteristics in Sulfur-Crosslinked Ethylene Propylene Diene Monomer Polymer Composites with Carbon Black and Silica Fillers after High-Pressure Hydrogen Exposure Reaching 90 MPa. Polymers 2023, 15, 162.
  •  
  • 29. Jung, J. K.; Baek, U. B.; Lee, S. H.; Choi, M. C.; Bae, J. W. Hydrogen Gas Permeation in Peroxide-Crosslinked Ethylene Propylene Diene Monomer Polymer Composites with Carbon Black and Silica Fillers. J. Polym. Sci. 2023, 61, 460-471.
  •  
  • 30. Choi, B. L.; Jung, J. K.; Baek, U. B.; Choi, B. H. Effect of Functional Fillers on Tribological Characteristics of Acrylonitrile Butadiene Rubber after High-Pressure Hydrogen Exposures. Polymers 2022, 14, 861.
  •  
  • 31. Lee, C. H.; Jung, J. K.; Jeon, S. K.; Ryu, K. S.; Baek, U. B. Nuclear Magnetic Resonance Study of O-Ring Polymer Exposed to High-Pressure Hydrogen. J. Magn. 2017, 22, 478-482.
  •  
  • 32. Lee, J.-H.; Kim, Y.-W.; Jung, J.-K. Investigation of the Gas Permeation Properties Using the Volumetric Analysis Technique for Polyethylene Materials Enriched with Pure Gases under High Pressure: H2, He, N2, O2 and Ar. Polymers 2023, 15, 4019.
  •  
  • 33. Lee, J. H.; Kim, Y. W.; Kim, D. J.; Chung, N. K.; Jung, J. K. Comparison of Two Methods for Measuring the Temperature Dependence of H2 Permeation Parameters in Nitrile Butadiene Rubber Polymer Composites Blended with Fillers: The Volumetric Analysis Method and the Differential Pressure Method. Polymers 2024, 16, 280.
  •  
  • 34. Lee, J. H.; Kim, Y. W.; Chung, N. K.; Kang, H. M.; Moon, W. J.; Choi, M. C.; Jung, J. K. Multiphase Modeling of Pressure-Dependent Hydrogen Diffusivity in Fractal Porous Structures of Acrylonitrile Butadiene Rubber-Carbon Black Composites with Different Fillers. Polymer 2024, 311, 127552.
  •  
  • 35. Lee, C. H.; Jung, J. K.; Kim, K. S.; Kim, C. J. Hierarchical Channel Morphology in O-Rings after Two Cycling Exposures to 70 MPa Hydrogen Gas: A Case Study of Sealing Failure. Sci. Rep. 2024, 14, 5319.
  •  
  • 36. Jung, J. K.; Lee, J. H.; Jang, J. S.; Chun, N. K.; Park, C. Y.; Baek, U. B.; Nahm, S. H. Characterization Technique of Gases Permeation Properties in Polymers: H2, He, N2 and Ar Gas. Sci. Rep. 2022, 12, 3328.
  •  
  • 37. Moon, Y.; Lee, H.; Jung, J.; Han, H. Direct Visualization of Carbon Black Aggregates in Nitrile Butadiene Rubber by THz Near-Field Microscope. Sci. Rep. 2023, 13, 7846.
  •  
  • 38. Kim, G. H.; Moon, Y. I.; Jung, J. K.; Choi, M. C.; Bae, J. W. Influence of Carbon Black and Silica Fillers with Different Concentrations on Dielectric Relaxation in Nitrile Butadiene Rubber Investigated by Impedance Spectroscopy. Polymers 2022, 14, 155.
  •  
  • 39. Jung, J. K.; Lee, C. H.; Baek, U. B.; Choi, M. C.; Bae, J. W. Filler Influence on H2 Permeation Properties in Sulfur-Crosslinked Ethylene Propylene Diene Monomer Polymers Blended with Different Concentrations of Carbon Black and Silica Fillers. Polymers 2022, 14, 592.
  •  
  • 40. Saffell, J. R.; Martin, N. A. Measurements of the Limit of Detection for Electrochemical Gas Sensors. J. Test. Eval. 2024, 52(5).
  •  
  • 41. Seleka, W. M.; Ramohlola, K. E.; Modibane, K. D.; Makhado, E. Conductive Chitosan/Polyaniline Hydrogel: A Gas Sensor for Room-Temperature Electrochemical Hydrogen Sensing. Int. J. Hydrog. Energy 2024, 68, 940-954.
  •  
  • 42. Mishra, S. R.; Gadore, V.; Ahmaruzzaman, M. Recent Advances in In2S3-Based Nanocomposites for Gas and Electrochemical Sensors: Mechanisms and Developments. Mater. Lett. 2024, 359, 135946.
  •  
  • 43. Cowen, T.; Grammatikos, S.; Cheffena, M. Molecularly Imprinted Polymer Nanoparticle-Carbon Nanotube Composite Electrochemical Gas Sensor for Highly Selective and Sensitive Detection of Methanol Vapour. Analyst 2024, 149, 2428-2435.
  •  
  • 44. Chen, W.; Liao, D.; Wu, S. Study on the Mechanism of Temperature Effect on SO2 Electrochemical Gas Sensor. J. Electrochem. Soc. 2024, 171, 117519.
  •  
  • 45. Molleman, B.; Alessi, E.; Passaniti, F.; Daly, K. Evaluation of the Applicability of a Metal Oxide Semiconductor Gas Sensor for Methane Emissions from Agriculture. Inf. Process. Agric. 2024, 11, 573-580.
  •  
  • 46. Kwon, S.-K.; Kim, J.-N.; Byun, H.-G.; Kim, H.-J. Low-Power and Cost-Effective Readout Circuit Design for Compact Semiconductor Gas Sensor Systems. Electrochem. Commun. 2024, 169, 107834.
  •  
  • 47. Li, Y.; Yuan, Z.; Ji, H.; Meng, F.; Wang, H. Response Surface Method Analysis of Gas-Sensitive Properties: Investigating the Influence of External Environment on the Performance of Semiconductor Gas Sensors. IEEE Trans. Ind. Electron. 2024, 71, 11661-11670.
  •  
  • 48. Zhang, X.; Ojha, B.; Bichlmaier, H.; Hartmann, I.; Kohler, H. Extensive Gaseous Emissions Reduction of Firewood-Fueled Low Power Fireplaces by a Gas Sensor-Based Advanced Combustion Airflow Control System and Catalytic Post-Oxidation. Sensors 2023, 23, 4679.
  •  
  • 49. Bowen, W. Research on Nonlinear Calibration of Mine Catalytic-Combustion-Based Combustible-Gas Sensor Based on RBF Neural Network. Heliyon 2023, 9, e14055.
  •  
  • 50. Tamura, S.; Imanaka, N. Low-Temperature Operable Catalytic Combustion-Type CO Gas Sensors. Bunseki Kagaku 2021, 70, 327-334.
  •  
  • 51. Xie, R.; Guan, S.; Tan, Z. A Gas Sensor Scheme for CO Based on Optical-Feedback Linear-Cavity Enhanced Absorption Spectroscopy. Opt. Commun. 2025, 574, 131105.
  •  
  • 52. Zhang, Y.; Wang, M.; Yu, P.; Liu, Z. Optical Gas-Cell Dynamic Adsorption in a Photoacoustic Spectroscopy-Based SOF2 and SO2F2 Gas Sensor. Sensors 2022, 22, 7949.
  •  
  • 53. Wang, M.; Liu, J.; Bai, Y.; Zheng, D.; Fang, L. Flow Rate Measurement of Gas-Liquid Annular Flow Through a Combined Multimodal Ultrasonic and Differential Pressure Sensor. Energy 2024, 288, 129852.
  •  
  • 54. Shi, X.; Tan, C.; Dong, F. Oil–Gas–Water Three-Phase Flow Pattern Identification Through Parallel Decision Trees With Differential Pressure and Ultrasonic Sensors. IEEE Trans. Instrum. Meas. 2024, 73, 7508515.
  •  
  • 55. Yang, Q.; Jin, N.; Deng, Y.; Wang, D. Water Holdup Measurement of Gas-Liquid Flows Using Distributed Differential Pressure Sensors. IEEE Sens. J. 2021, 21, 2149-2158.
  •  
  • 56. Deng, Y.-R.; Jin, N.-D.; Yang, Q.-Y.; Wang, D.-Y. A Differential Pressure Sensor Coupled With Conductance Sensors to Evaluate Pressure Drop Prediction Models of Gas-Water Two-Phase Flow in a Vertical Small Pipe. Sensors 2019, 19, 2723.
  •  
  • 57. Kendler, R.; Dreisbach, F.; Seif, R.; Pollak, S.; Petermann, M. Method for Estimating Vapour Pressures Based on Thermogravimetric Measurements With a Magnetic Suspension Balance. Thermochim. Acta 2018, 664, 128-135.
  •  
  • 58. Schabel, W.; Scharfer, P.; Kind, M.; Mamaliga, I. Sorption and Diffusion Measurements in Ternary Polymer-Solvent-Solvent Systems by Means of a Magnetic Suspension Balance - Experimental Methods and Correlations With a Modified Flory-Huggins and Free-Volume Theory. Chem. Eng. Sci. 2007, 62, 2254-2266.
  •  
  • 59. Jung, J. K.; Kim, I. G.; Chung, K. S.; Kim, Y.-I.; Kim, D. H. Determination of Permeation Properties of Hydrogen Gas in Sealing Rubbers Using Thermal Desorption Analysis Gas Chromatography. Sci. Rep. 2021, 11, 17092.
  •  
  • 60. Jung, J. K.; Kim, I. G.; Chung, K. S.; Baek, U. B. Gas Chromatography Techniques to Evaluate the Hydrogen Permeation Characteristics in Rubber: Ethylene Propylene Diene Monomer. Sci. Rep. 2021, 11, 4859.
  •  
  • 61. Jung, J. K.; Kim, K.-T.; Chung, K. S. Two Volumetric Techniques for Determining the Transport Properties of Hydrogen Gas in Polymer. Mater. Chem. Phys. 2022, 276, 125364.
  •  
  • 62. Slater, R.; Tharmaratnam, K.; Belnour, S.; Allen, S.; Probert, C. Gas Chromatography–Sensor System Aids Diagnosis of Inflammatory Bowel Disease, and Separates Crohn’s From Ulcerative Colitis, in Children. Sensors 2024, 24, 5079.
  •  
  • 63. Jung, J. K.; Kim, I. G.; Kim, K.-T.; Ryu, K. S.; Chung, K. S. Evaluation Techniques of Hydrogen Permeation in Sealing Rubber Materials. Polym. Test. 2021, 93, 107016.
  •  
  • 64. Hardoyono, F.; Windhani, K. Combination of Metal Oxide Semiconductor Gas Sensor Array and Solid-Phase Microextraction Gas Chromatography–Mass Spectrometry for Odour Classification of Brewed Coffee. Flavour Fragr. J. 2023, 38, 451-463.
  •  
  • 65. Huang, Z.; Yang, W.; Zhang, Y.; Wang, P.; Wan, H. Miniaturized Electrochemical Gas Sensor With a Functional Nanocomposite and Thin Ionic Liquid Interface for Highly Sensitive and Rapid Detection of Hydrogen. Anal. Chem. 2024, 96, 17960-17968.
  •  
  • 66. Hinojo, A.; Lujan, E.; Abella, J.; Colominas, S. Development and Characterization of Electrochemical Hydrogen Sensors Using Different Fabrication Techniques. Fusion Eng. Des. 2024, 204, 114483.
  •  
  • 67. Jung, J. K.; Kim, I. G.; Jeon, S. K.; Chung, K. S. Characterizing the Hydrogen Transport Properties of Rubbery Polymers by Gravimetric Analysis. Rubber Chem. Technol. 2021, 94, 688-703.
  •  
  • 68. Zhu, X.; Ahmed, W.; Schmidt, K.; Fowler, S. J.; Blanford, C. F. Validation of an Electronic VOC Sensor Against Gas Chromatography - Mass Spectrometry. IEEE Trans. Instrum. Meas. 2024, 1, 99.
  •  
  • 69. Quercia, L.; Khomenko, I.; Capuano, R.; Biasioli, F.; Di Natale, C. Optimization of Gas Sensors Measurements by Dynamic Headspace Analysis Supported by Simultaneous Direct Injection Mass Spectrometry. Sens. Actuators B Chem. 2021, 347, 130580.
  •  
  • 70. Shaltaeva, Y. R.; Podlepetsky, B. I.; Pershenkov, V. S. Detection of Gas Traces Using Semiconductor Sensors, Ion Mobility Spectrometry, and Mass Spectrometry. Eur. J. Mass Spectrom. 2017, 23, 217-224.
  •  
  • 71. Imonigie, J. A.; Walters, R. N.; Gribb, M. M. Rapid Isothermal Gas Chromatography-Mass Spectrometry Method for Validating a Small Ion Mobility Spectrometer Sensor. Instrum. Sci. Technol. 2006, 34, 677-695.
  •  
  • 72. Pérès, C.; Begnaud, F.; Berdagué, J.-L. Standard Gas Addition: A Calibration Method for Handling Temporal Drifts of Mass Spectrometry-Based Sensors. Anal. Chem. 2002, 74, 2279-2283.
  •  
  • 73. Lee, J. H.; Jung, J. K. Development of Image-Based Water Level Sensor With High-Resolution and Low-Cost Using Image Processing Algorithm: Application to Outgassing Measurements From Gas-Enriched Polymer. Sensors 2024, 24, 7699.
  •  
  • 74. Jung, J. K.; Kim, I. G.; Jeon, S. K.; Kim, K.-T.; Baek, U. B.; Nahm, S. H. Volumetric Analysis Technique for Analyzing the Transport Properties of Hydrogen Gas in Cylindrical-Shaped Rubbery Polymers. Polym. Test. 2021, 99, 107147.
  •  
  • 75. Jung, J. K.; Lee, J. H.; Jeon, S. K.; Bae, J. W.; Moon, W. J. Correlations Between H₂ Permeation and Physical/Mechanical Properties in Ethylene Propylene Diene Monomer Polymers Blended With Carbon Black and Silica Fillers. Int. J. Mol. Sci. 2023, 24, 2865.
  •  
  • 76. Jung, J. K.; Kim, K.-T.; Baek, U. B. Simultaneous Three-Channel Measurements of Hydrogen Diffusion with Light Intensity Analysis of Images by Employing Webcam. Curr. Appl. Phys. 2022, 37, 19-26.
  •  
  • 77. Lee, C. H.; Park, S.-H.; Jung, J. K.; Ryu, K.-S.; Nahm, S. H.; Kim, J.; Chen, Y. ¹¹B Nuclear Magnetic Resonance Study of Boron Nitride Nanotubes Prepared by Mechano-Thermal Method. Solid State Commun. 2005, 134, 419-423.
  •  
  • 78. Jung, J. K. Review of Developed Methods for Measuring Gas Uptake and Diffusivity in Polymers Enriched by Pure Gas Under High Pressure. Polymers, 2024, 16, 723.
  •  
  • 79. Jung, J. K.; Kim, K.-T.; Baek, U. B.; Nahm, S. H. Volume Dependence of Hydrogen Diffusion for Sorption and Desorption Processes in Cylindrical-Shaped Polymers. Polymers 2022, 14, 756.
  •  
  • 80. Jung, J. K.; Jeon, S. K.; Kim, K.-T.; Lee, C. H.; Baek, U. B.; Chung, K. S. Impedance Spectroscopy for In Situ and Real-Time Observations of the Effects of Hydrogen on Nitrile Butadiene Rubber Polymer Under High Pressure. Sci. Rep. 2019, 9, 13035.
  •  
  • 81. Jung, J. K.; Moon, Y. I.; Chung, K. S. Dielectric Relaxation in a Fluoroelastomer and Ethylene Propylene Diene Monomer Observed by Using Impedance Spectroscopy. J. Korean Phys. Soc. 2020, 76, 416.
  •  
  • 82. Jung, J. K.; Lee, J. H.; Kim, Y. W.; Chung, N. K. Development of Portable Gas Sensing System for Measuring Gas Emission Concentration and Diffusivity Using Commercial Manometric Sensors in Gas-Exposed Polymers: Application to Pure Gases, H2, He, N2, O2 and Ar. Sens. Actuators B Chem., 2024, 418, 136240.
  •  
  • 83. Jung, J. K.; Lee, C. H.; Son, M. S.; Lee, J. H.; Baek, U. B.; Chung, K. S.; Choi, M. C.; Bae, J. W. Filler Effects on H2 Diffusion Behavior in Nitrile Butadiene Rubber Blended With Carbon Black and Silica Fillers of Different Concentrations. Polymers 2022, 14, 700.
  •  
  • 84. Crank, J. The Mathematics of Diffusion; Clarendon Press: Oxford, 1979.
  •  
  • 85. Demarez, A.; Hock, A. G.; Meunier, F. A. Diffusion of Hydrogen in Mild Steel. Acta Metall. 1954, 2, 214-223.
  •  
  • 86. Nelder, J. A.; Mead, R. A Simplex Method for Function Minimization. Comput. J. 1965, 7, 308-313.
  •  
  • 87. Li, D.; Liu, T.; Wu, S.; Xu, H.; Wu, B. The Liquid Level Measurement of Ultra Low Temperature Cylinder Based on the Relative Capacity Method. In Proceedings of the 2015 4th National Conference on Electrical, Electronics and Computer Engineering Atlantis Press: Dordrecht, 2015; pp. 1061-1066.
  •  
  • 88. Sander, R.; Acree, W. E.; Visscher, A. D.; Schwartz, S. E.; Wallington, T. J. Henry’s Law Constants (IUPAC Recommendations 2021). Pure Appl. Chem. 2022, 94, 71-85.
  •  
  • 89. Jung, J. K.; Faisal, A.; Lee, Y. S.; Kim, K. T. Calibration of Voltage Transformer Test Set Using an Error Simulator. Meas. Sci. Technol. 2015, 26, 095004.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2024 Impact Factor : 0.6
  • Indexed in SCIE

This Article

  • 2025; 49(6): 719-730

    Published online Nov 25, 2025

  • 10.7317/pk.2025.49.6.719
  • Received on Mar 4, 2025
  • Revised on Jun 12, 2025
  • Accepted on Jun 13, 2025

Correspondence to

  • Ji Hun Lee
  • Hydrogen energy group, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea

  • E-mail: ljh93@kriss.re.kr