• Catalyst Effect on the Self-Healing Properties of Bio-Based Diels-Alder Polyurethanes
  • Heru Santoso*, **,† , Sabrina Aufar Salma**, Frita Yuliati**, Safira Dwi Cahyani***, and Sumarno Sumarno*,†

  • *Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember (ITS), Surabaya 60111, Indonesia
    **Research Center for Polymer Technology, National Research and Innovation Agency (BRIN), KST BJ. Habibie 460 building, South Tangerang 15314, Indonesia
    ***Chemistry Department, Syarif Hidayatullah State Islamic University (UIN), Jakarta 15412, Indonesia

  • 바이오 기반 Diels-Alder 폴리우레탄의 자가치유 특성에 대한 촉매 효과 연구
  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.


References
  • 1. Haponiuk, J. T. Polyurethane Polymers, Blends and Interpenetrating Polymer Networks. In Polyurethane Polymers; Sabu. Thomas, Janusz. Datta, Jozef. T. Haponiuk, A. R., Ed.; Elsevier: Amsterdam, 2017; pp i-iii.
  •  
  • 2. Akindoyo, J. O.; Beg, M. D. H.; Ghazali, S.; Islam, M. R.; Jeyaratnam, N.; Yuvaraj, A. R. Polyurethane Types, Synthesis and Applications-a Review. RSC Adv. 2016, 6, 114453-114482.
  •  
  • 3. Liu, H.; Yang, P.; Li, Z.; Wen, Q.; Li, X.; Zhu, C.; Jiao, P.; Zhuang, W.; Wu, J.; Ying, H. Thermodynamics, Characterization, and Polymorphic Transformation of 1,5-Pentanediamine Carbonate. Ind. Eng. Chem. Res. 2020, 59, 10185-10194.
  •  
  • 4. Willocq, B.; Odent, J.; Dubois, P.; Raquez, J. M. Advances in Intrinsic Self-healing Polyurethanes and Related Composites. RSC Adv. 2020, 10, 13766-13782.
  •  
  • 5. Wang, D.; Chen, S.; Zhao, J.; Zhang, Z. Synthesis and Characterization of Self-healing Cross-linked Non-isocyanate Polyurethanes Based on Diels-Alder Reaction with Unsaturated Polyester. Mater. Today Commun. 2020, 23, 101138.
  •  
  • 6. Sriharshitha, S.; Krishnadevi, K.; Devaraju, S.; Srinivasadesikan, V.; Lee, S.-L. Eco-Friendly Sustainable Poly(benzoxazine-co-urethane) with Room-Temperature-Assisted Self-Healing Based on Supramolecular Interactions. ACS Omega 2020, 5, 33178-33185.
  •  
  • 7. Zhu, M.; Liu, J.; Gan, L.; Long, M. Research Progress in Bio-based Self-healing Materials. Eur. Polym. J. 2020, 129.
  •  
  • 8. Tremblay-Parrado, K.-K.; Avérous, L. Renewable Responsive Systems Based on Original Click and Polyurethane Cross-Linked Architectures with Advanced Properties. ChemSusChem 2020, 13, 238-251.
  •  
  • 9. Li, W.; Li, H.; Wu, C.; Han, B.; Ouyang, P.; Chen, K. An Effective Synthesis of Bio-based Pentamethylene Diisocyanate in a Jet Loop Reactor. Chem. Eng. J. 2021, 425.
  •  
  • 10. He, F.; Tang, Y.; Lu, Z.; Hu, Q.; Yang, Y.; Li, G.; Li, H.; Chen, K. An Effective Purification of Double-effect Distillation for Bio-based Pentamethylene Diisocyanate. RSC Adv. 2023, 13, 31518-31527.
  •  
  • 11. Tawade, B. V; Shingte, R. D.; Kuhire, S. S.; Sadavarte, N. V; Garg, K.; Maher, D. M.; Ichake, A. B.; More, A. S.; Wadgaonkar, P. P. Bio-Based Di-/Poly-isocyanates for Polyurethanes: An Overview. PU Today 2017, 41-46.
  •  
  • 12. Lenzi, V.; Crema, A.; Pyrlin, S.; Marques, L. Current State and Perspectives of Simulation and Modeling of Aliphatic Isocyanates and Polyisocyanates. Polym. 2022, 14, 1642.
  •  
  • 13. Zhang, J.; Tu, W.; Dai, Z. Synthesis and Characterization of Transparent and High Impact Resistance Polyurethane Coatings Based on Polyester Polyols and Isocyanate Trimers. Prog. Org. Coatings 2012, 75, 579-583.
  •  
  • 14. Wang, H.; Cao, L.; Wang, X.; Lang, X.; Cong, W.; Han, L.; Zhang, H.; Zhou, H.; Sun, J.; Zong, C. Effects of Isocyanate Structure on the Properties of Polyurethane: Synthesis, Performance, and Self-Healing Characteristics. Polym. 2024, 16, 3045.
  •  
  • 15. Yu, C.; Wang, Z.; Fei, G.; Zhang, X.; de Luna, M. S.; Lavorgna, M.; Xia, H. Robust Self-healing Waterborne Polyurethane Coatings via Dynamic Covalent Diels-Alder Bonds for Corrosion Protection. J. Polym. Sci. 2024, 62, 815-825.
  •  
  • 16. Wei, Y.; Ma, X. The Self-healing Cross-linked Polyurethane by Diels–Alder Polymerization. Adv. Polym. Technol. 2018, 37, 1987-1993.
  •  
  • 17. Sridhar, L. M.; Oster, M. O.; Herr, D. E.; Gregg, J. B. D.; Wilson, J. A.; Slark, A. T. Re-usable Thermally Reversible Crosslinked Adhesives from Robust Polyester and Poly(ester urethane) Diels-Alder Networks. Green Chem. 2020, 22, 8669-8679.
  •  
  • 18. Li, Q.; He, H.; Ye, X.; Guan, F.; Ai, Y.; Shen, Y.; Zhang, C. NIR Light-induced Functionalized MXene as a Dynamic-crosslinker for Reinforced Polyurethane Composites with Shape Memory and Self-healing. Chem. Eng. J. 2023, 475, 146500.
  •  
  • 19. Huang, X.; Wang, X.; Shi, C.; Liu, Y.; Wei, Y. Research on Synthesis and Self-healing Properties of Interpenetrating Network Hydrogels Based on Reversible Covalent and Reversible Non-covalent Bonds. J. Polym. Res. 2021, 28, 1.
  •  
  • 20. Hu, C.; Li, J.; Pan, X.; Zeng, Y. Intrinsically Flame-retardant Vanillin-based PU Networks with Self-healing and Reprocessing Performances. Ind. Crops Prod. 2023, 200, 116828.
  •  
  • 21. Sung, S.; Kim, S. Y.; Lee, T. H.; Favaro, G.; Park, Y. I.; Lee, S.-H.; Ahn, J. B.; Noh, S. M.; Kim, J. C. Thermally Reversible Polymer Networks for Scratch Resistance and Scratch Healing in Automotive Clear Coats. Prog. Org. Coatings 2019, 127, 37-44.
  •  
  • 22. Irusta, L.; Fernández-Berridi, M. J.; Aizpurua, J. Polyurethanes Based on Isophorone Diisocyanate Trimer and Polypropylene Glycol Crosslinked by Thermal Reversible Diels Alder Reactions. J. Appl. Polym. Sci. 2017, 134, DOI: 10.1002/app.44543.
  •  
  • 23. Aizpurua, J.; Martin, L.; Formoso, E.; González, A.; Irusta, L. One Pot Stimuli-responsive Linear Waterborne Polyurethanes via Diels-Alder Reaction. Prog. Org. Coatings 2019, 130, 31-43.
  •  
  • 24. Kim, H.-N.; Lee, D.-W.; Ryu, H.; Song, G.-S.; Lee, D.-S. Preparation and Characterization of Isosorbide-based Self-healable Polyurethane Elastomers with Thermally Reversible Bonds. Molecules 2019, 24, 1061.
  •  
  • 25. Varganici, C.-D.; Ursache, O.; Gaina, C.; Gaina, V.; Rosu, D.; Simionescu, B. C. Synthesis and Characterization of a New Thermoreversible Polyurethane Network. Ind. Eng. Chem. Res. 2013, 52, 5287-5295.
  •  
  • 26. Gaina, C.; Ursache, O.; Gaina, V.; Varganici, C. D. Thermally Reversible Cross-linked Poly(ether-urethane)s. Express Polym. Lett. 2013, 7, 636-650.
  •  
  • 27. Lakatos, C.; Czifrak, K.; Karger-Kocsis, J.; Daroczi, L.; Zsuga, M.; Keki, S. Shape Memory Crosslinked Polyurethanes Containing Thermoreversible Diels-Alder Couplings. J. Appl. Polym. Sci. 2016, 133, DOI: 10.1002/app.44145.
  •  
  • 28. Behera, P. K.; Raut, S. K.; Mondal, P.; Sarkar, S.; Singha, N. K. Self-Healable Polyurethane Elastomer Based on Dual Dynamic Covalent Chemistry Using Diels-Alder ‘Click’ and Disulfide Metathesis Reactions. ACS Appl. Polym. Mater. 2021, 3, 847-856.
  •  
  • 29. Fu, G.; Yuan, L.; Liang, G.; Gu, A. Heat-resistant Polyurethane Films with Great Electrostatic Dissipation Capacity and Very High Thermally Reversible Self-healing Efficiency Based on Multi-furan and Liquid Multi-maleimide Polymers. J. Mater. Chem. A 2016, 4, 4232-4241.
  •  
  • 30. Du, P.; Wu, M.; Liu, X.; Zheng, Z.; Wang, X.; Joncheray, T.; Zhang, Y. Diels-Alder-based Crosslinked Self-healing Polyurethane/urea from Polymeric Methylene Diphenyl Diisocyanate. J. Appl. Polym. Sci. 2014, 131, DOI: 10.1002/app.40234.
  •  
  • 31. Li, Y.; Yang, Z.; Zhao, X.; Zhang, J.; Ding, L.; Pan, L.; Lin, C.; Zheng, X. Practicable Self-healing Polyurethane Binder for Energetic Composites Combining Thermo-reversible DA Action and Shape-memory Effect. Polym. Adv. Technol. 2021, 32, 4223-4232.
  •  
  • 32. Du, X.; Jin, L.; Deng, S.; Zhou, M.; Du, Z.; Cheng, X.; Wang, H. Recyclable, Self-Healing, and Flame-Retardant Solid-Solid Phase Change Materials Based on Thermally Reversible Cross-Links for Sustainable Thermal Energy Storage. ACS Appl. Mater. Interfaces 2021, 13, 42991-43001.
  •  
  • 33. Li, J.; Zhang, G.; Deng, L.; Zhao, S.; Gao, Y.; Jiang, K.; Sun, R.; Wong, C. In Situ Polymerization of Mechanically Reinforced, Thermally Healable Graphene Oxide/polyurethane Composites Based on Diels-Alder Chemistry. J. Mater. Chem. A 2014, 2, 20642-20649.
  •  
  • 34. Wang, Z.; Zhou, J.; Liang, H.; Ye, S.; Zou, J.; Yang, H. A Novel Polyurethane Elastomer with Super Mechanical Strength and Excellent Self-healing Performance of Wide Scratches. Prog. Org. Coatings 2020, 149, 105943.
  •  
  • 35. Xu, Y.; Chen, D. Shape Memory-assisted Self-healing Polyurethane Inspired by a Suture Technique. J. Mater. Sci. 2018, 53, 10582-10592.
  •  
  • 36. Zheng, K.; Tian, Y.; Fan, M.; Zhang, J.; Cheng, J. Recyclable, Shape-memory, and Self-healing Soy Oil-based Polyurethane Crosslinked by a Thermoreversible Diels–Alder Reaction. J. Appl. Polym. Sci. 2018, 135, DOI: 10.1002/app.46049.
  •  
  • 37. Mashlyakovskiy, L.; Khomko, E.; Volynkina, N.; Tonelli, C. Fluoropolyethers End‐capped by Polar Functional Groups. III. Kinetics of the Reactions of Hydroxy‐terminated Fluoropolyethers and Model Fluorinated Alcohols with Cyclohexyl Isocyanate Catalyzed by Organotin Compounds. J. Polym. Sci. Part A Polym. Chem. 2002, 40, 3771-3795.
  •  
  • 38. Renault, B.; Cloutet, E.; Cramail, H.; Hannachi, Y.; Tassaing, T. A Combined Spectroscopic and Theoretical Study of Dibutyltin Diacetate and Dilaurate in Supercritical CO2. J. Phys. Chem. A 2008, 112, 8379-8386.
  •  
  • 39. Sirajuddin, N. A., Jamil, M. S. M. & Lazim, M. A. S. M. Effect of Cross-link Density and the Healing Efficiency of Self-healing Poly(2-hydroxyethyl methacrylate) Hydrogel. E-Polymers 2014, 14, 289-294.
  •  
  • 40. Boden, J.; Bowen, C. R.; Buchard, A.; Davidson, M. G.; Norris, C. Understanding the Effects of Cross-Linking Density on the Self-Healing Performance of Epoxidized Natural Rubber and Natural Rubber. ACS Omega 2022, 7, 15098-15105.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2024 Impact Factor : 0.6
  • Indexed in SCIE

This Article

  • 2025; 49(6): 818-828

    Published online Nov 25, 2025

  • 10.7317/pk.2025.49.6.818
  • Received on Jun 26, 2025
  • Revised on Jul 30, 2025
  • Accepted on Aug 1, 2025

Correspondence to

  • Heru Santoso*, **, Sumarno Sumarno*
  • *Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember (ITS), Surabaya 60111, Indonesia
    **Research Center for Polymer Technology, National Research and Innovation Agency (BRIN), KST BJ. Habibie 460 building, South Tangerang 15314, Indonesia

  • E-mail: heru011@brin.go.id, onramus@chem-eng.its.ac.id