Article
  • Biodegradable Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Film Coated with Tannic Acid for Active Food Packaging
  • Yun Hyeok Choi# , Jeong Jin Park# , Eun Jung Sim*, Eunhye Lee*, Ki Chull Yoon*, and Won Ho Park

  • Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, Korea
    *CJ Cheiljedang Corp. 55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do 16495, Korea

  • 능동 식품포장을 위한 탄닌산이 코팅된생분해성 Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) 필름
  • 최윤혁# · 박정진# · 심은정* · 이은혜* · 윤기철* · 박원호

  • 충남대학교 유기응용재료공학과, *CJ 제일제당

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Peng, Y.; Wu P.; Schartup, A. T.; Zhang, Y. Plastic Waste Release Caused by COVID-19 and Its Fate in the Global Ocean. Proc. Natl. Acad. Sci. U.S.A. 2021, 118, e2111530118.
  •  
  • 2. Fraser, C. I.; Morrison, A. K.; Hogg, A. M.; Macaya, E. C.; Sebille, E. V.; Ryan, P. G.; Padovan, A.; Jack, C.; Valdivia, N.; Waters, J. M. Antarctica’s Ecological Isolation will be Broken by Storm-driven Dispersal and Warming. Nat. Clim. Chang. 2018, 8, 704-708.
  •  
  • 3. Waller, C. L.; Griffiths, H. J.; Waluda, C. M.; Thorpe, S. E.; Loaiza, I.; Moreno, B.; Pacherres, C. O.; Hughes, K. A. Microplastics in the Antarctic Marine System: An Emerging Area of Research. Sci. Total Environ. 2017, 598, 220-227.
  •  
  • 4. James, G. Plastics: The Challenges and Possible Solutions. The Principles for Responsible Investment (PRI). 2019, 1-13.
  •  
  • 5. Roland, G.; Jambeck, J. R.; Law, K. L. Production, use, and Fate of all Plastics Ever Made. Sci. Adv. 2017, 3, e1700782.
  •  
  • 6. Lee, S. J.; Gwak, M. A.; Chathuranga, K.; Lee, J. S.; Koo, J.; Park, W. H. Multifunctional Chitosan/tannic Acid Composite Films with Improved Anti-UV, Antioxidant, and Antimicrobial Properties for Active Food Packaging. Food Hydrocolloids. 2023, 136, 108249.
  •  
  • 7. Guo, C.; Guo, H. Progress in the Degradability of Biodegradable Film Materials for Packaging. Membranes 2022, 12, 500.
  •  
  • 8. Jung, S.; Yufei, C.; Barnes, M.; Satam, C.; Zhang, S.; Chowdhury, R. A.; Adumbumkulath, A.; Sahin, O.; Miller, C.; Sajadi, S. M.; Sassi, L. M.; Ji, Y.; Bennett, M. R.; Yu, M.; Friguglietti, J.; Merchant, F. A.; Verduzco, R.; Roy, S.; Vajtai, R.; Meredith, J. C.; Youngblood, J. P.; Koratkar, N.; Rahman, M. M.; Ajayan, P. M. Multifunctional Bio-Nanocomposite Coatings for Perishable Fruits. Adv. Mater. 2020, 32, 1908291.
  •  
  • 9. Yang, S.; Miao, Q.; Huang, Y.; Jian, P.; Wang, X.; Tu, M. Preparation of Cinnamaldehyde-loaded Polyhydroxyalkanoate/chitosan Porous Microspheres with Adjustable Controlled-release Property and Its Application in Fruit Preservation. Food Packaging Shelf Life. 2020, 26, 100596.
  •  
  • 10. Dong, S.; Zhang, Y.; Lu, D.; Gao, W.; Zhao, Q.; Shi, X. Multifunctional Intelligent Film Integrated with Purple Sweet Potato Anthocyanin and Quercetin-loaded Chitosan Nanoparticles for Monitoring and Maintaining Freshness of Shrimp. Food Packaging Shelf Life. 2023, 35, 101022.
  •  
  • 11. Liu, Y.; Ahmed, S.; Sameen, D. E.; Wang, Y.; Lu, R.; Dai, J.; Li, S.; Qin, W. A Review of Cellulose and its Derivatives in Biopolymer-based for Food Packaging Application. Trends Food Sci. Technol. 2021, 112, 532-546.
  •  
  • 12. Thakur, M.; Majid, I.; Hussain, S.; Nanda, V. Poly(ε-caprolactone): A Potential Polymer for Biodegradable Food Packaging Applications. Packag. Technol. Sci. 2021, 34, 449-461.
  •  
  • 13. Taherimehr, M.; YousefniaPasha, H.; Tabatabaeekoloor, R.; Pesaranhajiabbas, E. Trends and Challenges of Biopolymer-based Nanocomposites in Food Packaging. Compr. Rev. Food. Sci. Food Saf. 2021, 20, 5321-5344.
  •  
  • 14. Hege, C. S.; Schiller, S. M. Non-toxic Catalysts for Ring-opening Polymerizations of Biodegradable Polymers at Room Temperature for Biohybrid Materials. Green Chem. 2014, 16, 1410-1416.
  •  
  • 15. Gadomska-Gajadhur, A.; Ruśkowski, P. Biocompatible Catalysts for Lactide Polymerization-Catalyst Activity, Racemization Effect, and Optimization of the Polymerization Based On Design of Experiments. Org. Process Res. Dev. 2020, 24, 1435-1442.
  •  
  • 16. Meereboer, K. W; Misra, M.; Mohanty, A. K. Review of Recent Advances in the Biodegradability of Polyhydroxyalkanoate (PHA) Bioplastics and Their Composites. Green Chem. 2020, 22, 5519-5558.
  •  
  • 17. Alcântara, J. M. G.; Distante, F.; Storti, G.; Moscatelli, D.; Morbidelli, M.; Sponchioni, M. Current Trends in the Production of Biodegradable Bioplastics: The case of Polyhydroxyalkanoates. Biotechnol. Adv. 2020, 42, 107582.
  •  
  • 18. Grigore, M. E.; Grigorescu, R. M.; Iancu, L.; Ion, R. M.; Zaharia, C.; Andrei, E. R. Methods of Synthesis, Properties and Biomedical Applications of Polyhydroxyalkanoates: a Review. J. Biomater. Sci.-Polym. Ed. 2019, 30, 695-712.
  •  
  • 19. Aldam, S. A.; Dey, M.; Javaid, S.; Ji, Y.; Gupta, S. On the Synthesis and Characterization of Polylactic Acid, Polyhydroxyalkanoate, Cellulose Acetate, and Their Engineered Blends by Solvent Casting. J. Mater. Eng. Perform. 2020, 29, 5542-5556.
  •  
  • 20. Kowalczyk, D.; Biendl, M. Physicochemical and Antioxidant Properties of Biopolymer/candelilla Wax Emulsion Films Containing Hop Extract – A Comparative Study. Food Hydrocolloids. 2016, 60, 384-392.
  •  
  • 21. Pankaj, S. K.; Bueno-Ferrer, C.; Misra, N. N.; Milosavljević, V.; O'Donnell, C. P.; Bourke, P.; Keener, K. M.; Cullen, P. J. Applications of Cold Plasma Technology in Food Packaging. Trends Food Sci. Technol.2014, 35, 5-17.
  •  
  • 22. Vishnuvarthanan, M.; Rajeswari, N. Effect of Mechanical, Barrier and Adhesion Properties on Oxygen Plasma Surface Modified PP. Innov. Food Sci. Emerg. Technol. 2015, 30, 119-126.
  •  
  • 23. Park, H.; Lee, K. Y; Lee, S. J.; Park, K. E.; Park, W. H. Plasma-Treated Poly(lactic-co-glycolic acid) Nanofibers for Tissue Engineering. Macromol. Res. 2007, 15, 238-243.
  •  
  • 24. Idage, S. B.; Badrinarayanan, S.; Surface Modification of Polystyrene Using Nitrogen Plasma. An X-ray Photoelectron Spectroscopy Study. Langmuir. 1998, 14, 2780-2785.
  •  
  • 25. Trakunjae, C.; Boondaeng, A.; Apiwatanapiwat, W.; Kosugi, A.; Arai, T.; Sudesh, K.; Vaithanomsat, P.; Enhanced polyhydroxybutyrate (PHB) Production by Newly Isolated Rare Actinomycetes Rhodococcus sp. Strain BSRT1-1 Using Response Surface Methodology. Sci. Rep. 2021, 11, 1-14.
  •  
  • 26. Pati, S.; Maity, S.; Dash, A.; Jema, S.; Mohapatra, S.; Das, S; Samantaray, D. P. Biocompatible PHB Production from Bacillus Species Under Submerged and Solid-State Fermentation and Extraction Through Different Downstream Processing. Curr. Microbiol. 2020, 1203-1209.
  •  
  • 27. Auriemma, M.; Piscitelli, A.; Pasquino, R.; Cerruti, P.; Malinconico, M.; Grizzuti, N. Blending Poly(3-hydroxybutyrate) with Tannic Acid: Influence of a Polyphenolic Natural Additive on the Rheological and Thermal Behavior. Eur. Polym. J. 2015, 63, 123-131.
  •  
  • 28. Gwak, M. A.; Hong, B. M.; Park, W. H. Hyaluronic Acid/tannic Acid Hydrogel Sunscreen with Excellent Anti-UV, Antioxidant, and Cooling Effects. Int. J. Biol. Macromol. 2021, 191, 918-924.
  •  
  • 29. Rao, M. S.; Kanatt, S. R.; Chawla, S. P.; Sharma, A.; Chitosan and Guar Gum Composite Films: Preparation, Physical, Mechanical and Antimicrobial Properties. Carbohydr. Polym. 2010, 82, 1243-1247.
  •  
  • 30. Atta, A.; Ali, H. Structural and Thermal Properties of PTFE Films by Argon and Oxygen Plasma. Arab J. Nucl. Sci. Appl. 2013, 46, 106-114.
  •  
  • 31. Andrade, M. A.; Barbosa, C. H.; Cerqueira, M. A.; Azevedo, A. G.; Barros, C.; Machado, A. V.; Coelho, A.; Furtado, R.; Correia, C. B.; Saraiva, M.; Vilarinho. F.; Silva, A. S.; Ramos, F. PLA Films Loaded with Green Tea and Rosemary Polyphenolic Extracts as an Active Packaging for Almond and Beef. Food Packaging Shelf Life. 2023, 36, 101041.
  •  
  • 32. Fabra, M. J.; Amparo, L. R.; Lagaron, J. M. High Barrier Polyhydroxyalcanoate Food Packaging Film by Means of Nanostructured Electrospun Interlayers of Zein. Food Hydrocolloids. 2013, 32, 106-114.
  •  
  • 33. Pietta; Pier-Giorgio; Flavonoids as Antioxidants. J. Nat. Prod. 2000, 63, 1035-1042.
  •  
  • 34. Beata, K. Tannic Acid with Antiviral and Antibacterial Activity as a Promising Component of Biomaterials-A Minireview. Materials. 2020, 13, 3224.
  •  
  • 35. Huang, H.; Zhu, Q.; Zhang, Z.; Yang, B.; Duan, X.; Jiang, Y. Effect of Oxalic Acid on Antibrowning of Banana (Musa spp. AAA group, cv. ‘Brazil’) Fruit During Storage. Sci. Hortic. 2013, 160, 208-212.
  •  
  • 36. Lufu, R.; Ambaw, A.; Opara, U. L. Water Loss of Fresh Fruit: Influencing Pre-harvest, Harvest and Postharvest Factors. Sci. Hortic. 2020, 272, 109519.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2023; 47(4): 495-504

    Published online Jul 25, 2023

  • 10.7317/pk.2023.47.4.495
  • Received on Mar 29, 2023
  • Revised on Apr 17, 2023
  • Accepted on Apr 19, 2023

Correspondence to

  • Won Ho Park
  • Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, Korea

  • E-mail: parkwh@cnu.ac.kr