Article
  • The Effect of Anionic Surfactat Solution on the Phase Transition Behavior of Poly( N-isopropylacrylamide) Hydrogel.
  • Kim K, Shin YJ
  • 음이온성 계면활성제가 Poly(N-isopropylacrylamide) 수화겔의 상전이 현상에 미치는 영향
  • 김기훈, 신영조
Abstract
Poly(N-isopropylacrylamide)(pNIPAAm) hydrogels were prepared by radical polymerization and the effects of anionic surfactant solution on the phase transition behaviors of pNIPAAm hydrogel were studied. Swelling/shrinking ratio, phase transition temperature, change of transmittance and the phase transition energy of hydrogel were studied in a different concentration of sodium dodecylbenzenesulfonate(SDBS) solutions as a function of temperature. Swelling/shrinking ratio and the transition temperature were increased as the surfactant concentration increased. Phase transition temperature of pNIPAAm hydrogel in a pure water is 33℃∼35℃ but, it increased up to 47℃ in a 10mM of SDBS solution. On the other hand, phase transition energy was decreased from 1.56(cal/g) in pure water to 0.18(cal/g) in 10 mM of SDBS solution.

음이온성 계면활성제가 poly(N-isopropylacrylamide)(pNIPAAm) 수화겔의 상전이 현상에 미치는 영향을 조사하기 위하여 N-Isopropylacrylamide를 자유라디칼 중합에 의하여 제조하였다. 제조된 수화겔의 팽윤/수축비, 상전이 온도, 온도에 따른 투광도의 변화 및 상전이 옅량 등을 각각 다른 농도의 sodiumdodecy1benzenesulfonate(SDBS) 수용액 속에서 조사하였다. 계면활성제의 농도가 커질수록 즉, 수화겔과 화합할 수 있는 계면활성제의 자유이온의 양이 많아질수록 수화겔의 팽윤/수축비와 상전이 온도는 증가하였다. PNIPAAm 수화겔의 상전이 온도는 순수한 수용액에서 33℃-35℃이지만 10mM의 SDBS에서는 약 47℃까지 증가하였다. 상전이에 필요한 열량은 순수용액에서의 1.56(cal/g)으로 부터 10mM SDBS속에서의 0.18(cal/g)까지 감소하였다.

Keywords: poly(N-isopropylacrylamide); hydrogel; anionic surfactant

References
  • 1. Bae YH, Okano T, Kim SW, J. Polym. Sci. B: Polym. Phys., 28, 923 (1990)
  •  
  • 2. Siegel RA, Firestone BA, Macromolecules, 21, 3254 (1988)
  •  
  • 3. Tanaka T, Phys. Rev. Lett., 45, 1636 (1980)
  •  
  • 4. Kishi R, Hasebe M, Hara M, Osada Y, Polym. Adv. Technol., 1, 19 (1990)
  •  
  • 5. Ohmine I, Tanaka T, J. Chem. Phys., 11, 5725 (1982)
  •  
  • 6. Tanaka T, Phys. Rev. Lett., 40, 820 (1978)
  •  
  • 7. Hirokawa Y, Tanaka T, J. Chem. Phys., 81, 6379 (1984)
  •  
  • 8. Katayama S, Hirokawa Y, Tanaka T, Macromolecules, 17, 2641 (1984)
  •  
  • 9. Kokufuta E, Zhang Y, Tanaka T, Mamada A, Macromolecules, 26, 1053 (1993)
  •  
  • 10. Taylor LD, Cerenkowski LD, J. Polym. Sci., 13, 2551 (1975)
  •  
  • 11. Ilavsky M, Hrouz J, Polym. Bull., 8, 387 (1982)
  •  
  • 12. Bae YH, Okano T, Hsu R, Kim SW, Makromol. Chem. Rapid Commun., 8, 481 (1987)
  •  
  • 13. Dong LC, Hoffman AS, J. Control. Release, 13, 21 (1990)
  •  
  • 14. Katono H, Sanui K, Ogata N, Okano T, Sakurai Y, Polym. J., 23, 1179 (1991)
  •  
  • 15. Afrassiabi A, Hoffman AS, Cadwell LA, J. Membr. Sci., 33, 191 (1987)
  •  
  • 16. Freitas RES, Cussler EL, Chem. Eng. Sci., 42, 97 (1987)
  •  
  • 17. Feil H, Bae YH, Fenjen J, Kim SW, J. Membr. Sci., 64, 283 (1991)
  •  
  • 18. Hoffman AS, Afrassiati A, Dong IC, J. Control. Release, 4, 213 (1986)
  •  
  • 19. Maugh TH, Science, 223, 474 (1984)
  •  
  • 20. Park TG, Hoffman AS, Appl. Biochem. Biotechnol., 19, 1 (1988)
  •  
  • 21. Fujimura M, Mori T, Tosa T, Biotechnol. Bioeng., 29, 747 (1987)
  •  
  • 22. Carenza M, Yoshida M, Kumakura M, Fujimura T, Eur. Polym. J., 29, 1013 (1993)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 1994; 18(5): 860-867

    Published online Sep 25, 1994