Article
  • A Faster Approach to Stereocomplex Formation of High Molecular Weight Polylactide Using Supercritical Dimethyl Ether
  • Bibi G, Jung Y, Lim JC, Kim SH
  • 디메틸에테르 초임계 유체를 이용한 고분자량 폴리락티드 스테레오 콤플렉스의 제조
  • 굴나즈비비, 정영미, 임종주, 김수현
Abstract
Engineering the polylactide via stereocomplexation with supercritical fluid (SCF) technology paved way to fabricate polymers with enhanced thermal and mechanical properties. We aimed to establish a SCF medium with excellent solubility for PLA without any additional solvent/co-solvent. We, therefore, employed supercritical dimethyl ether to synthesize 100% stereocomplex polylactide from high molecular weight homopolymers with an excellent yield. The remarkable solubility of the homopolymers in dimethyl ether is the key for quick conversion to s-PLA. This study proves a rapid synthesis route of dry s-PLA powder with sc-DME at 250 bar, 70 oC and 1.5 h, which are reasonably achievable processing parameters compared to the conventional methods. The degree of stereocomplexation was evaluated under the effect of pressures, temperatures, times, homopolymer-concentrations and molecular weights. An increment in the degree of stereocomplexation was observed with increased temperature and pressure. Complete conversion to s-PLA was obtained for PLLA and PDLA with Mn~200 kg·mol-1 with a total homopolymer to total DME ratio of 6:100% w/w at prescribed reaction conditions. The degree of stereocomplexation was determined by DSC and confirmed by XRD. Considerable improvement in thermo-mechanical properties of s-PLA was observed. DSC and TGA analyses proved a 50 oCenhancement in melting transition and a high onset temperature for thermal degradation of s-PLA respectively.

초임계 유체 기술을 이용한 폴리락티드 스테레오 콤플렉스 제조는 폴리락티드의 열적 및 기계적 물성을 향상 시키는 좋은 방법이다. 이 연구에서는 초임계 유체인 디메틸에테르를 이용하여 고분자량 폴리락티드를 높은 수율로 100% 스테레오 콤플렉스화를 시켰다. 폴리락티드에 대한 디메틸에테르의 높은 용해성은 이 공정의 핵심요소로 250 bar, 70 oC, 1.5시간에 반응이 종료되었다. 폴리락티드의 스테레오 콤플렉스 연구는 압력, 온도, 시간, 농도 및 분자량을 변화시키며 진행하였다. 스테레오 콤플렉스화는 온도와 압력이 증가할 때 높아졌다. 분자량 20만 이상인 PLLA와 PLA는 6%의 디메틸에테르에서 100% 스테레오 콤플렉스화가 이루어졌다. 스테레오 콤플렉스화 정도는 DSC 및 XRD를 통해 이루어졌다. 또한 DSC 및 TGA 분석을 통해 융점이 50 oC 이상 높아진 폴리락티드가 얻어졌음을 확인하였다.

Keywords: fast stereocomplex; dimethyl ether; high molecular weight polylactides; supercritical fluid technology

References
  • 1. Lim JI, Kim SI, Jung Y, Kim SH, Polym.(Korea), 37(4), 411 (2013)
  •  
  • 2. Ikada Y, Jamshidi K, Tsuji H, Hyon SH, Macromolecules, 20, 904 (1987)
  •  
  • 3. Tsuji H, Macromol. Biosci., 5, 569 (2005)
  •  
  • 4. Kang HJ, Kim YH, Kim SH, Chun SW, Polym.(Korea), 24, 656 (2000)
  •  
  • 5. Kim WJ, Kim JH, Kim SH, Kim YH, Polym.(Korea), 24(3), 431 (2000)
  •  
  • 6. Spinu M, U.S. Patent 5,317,064, (1994). (1994)
  •  
  • 7. Fukushima K, Kimura Y, Macromol. Symp., 224, 133 (2005)
  •  
  • 8. Anderson KS, Hillmyer MA, Polymer, 47(6), 2030 (2006)
  •  
  • 9. Fukushima K, Kimura Y, J. Polym. Sci. A: Polym. Chem., 46(11), 3714 (2008)
  •  
  • 10. Purnama P, Kim SH, Macromolecules, 43(2), 1137 (2010)
  •  
  • 11. Kang MK, Jung Y, Kim SH, Macromol. Res., 21(9), 1036 (2013)
  •  
  • 12. Prabowo B, Kim SY, Choi DH, Kim SH, Polym.(Korea), 35(4), 284 (2011)
  •  
  • 13. Purnama P, Kim SH, Polym. Int., 61, 939 (2012)
  •  
  • 14. Reverchon E, Della Porta G, De Rosa I, Subra P, Letourneur D, J. Supercrit. Fluids, 18(3), 239 (2000)
  •  
  • 15. Lee JM, Lee BC, Hwang SJ, J. Chem. Eng. Data, 45, 1162 (2000)
  •  
  • 16. Abraham JD, Joseph K, David MW, Editors, Handbook of Biodegradable Polymers, CRC Press, Boca Raton, 1998. (1998)
  •  
  • 17. Tsuji H, Horii F, Nakagawa M, Ikada Y, Odani H, Kitamaru R, Macromelecules, 25, 4144 (1992)
  •  
  • 18. Tsuji H, Mizuno A, Ikada Y, J. Appl. Polym. Sci., 76(6), 947 (2000)
  •  
  • 19. Tsuji H, Hyon SH, Ikada Y, Macromolecules, 24, 5651 (1991)
  •  
  • 20. Tsuji H, Ikada Y, Polymer, 40(24), 6699 (1999)
  •  
  • 21. McHugh MA, Krukonis VJ, Supercritical Fluid Extraction: Principles and Practice, 2nd Ed., Butterworth-Heinemann, Boston, MA, 1994. (1994)
  •  
  • 22. Lee BC, Kuk YM, J. Chem. Eng. Data, 47(2), 367 (2002)
  •  
  • 23. Herman B, Aerosol Spray Rep., 33, 385 (1994)
  •  
  • 24. Bobbo S, Camporese R, Stryjek R, J. Chem. Thermodyn., 30(8), 1041 (1998)
  •  
  • 25. Bivens DB, Minor BH, Int. J. Refrig. -Rev. Int. Froid, 21, 567 (1998)
  •  
  • 26. Good DA, Li Y, Francisco JS, Chem. Phys. Lett., 313, 267 (1999)
  •  
  • 27. Wuebbles DJ, Jain A, Edmonds J, Harvey D, Hayhoe K, Environ. Pollut., 100, 57 (1999)
  •  
  • 28. Good DA, Francisco JS, Jain A, Wuebbles DJ, J. Geophys. Res., 103, 2818 (1998)
  •  
  • 29. Wu JT, Liu ZG, Pan J, Zhao XM, J. Chem. Eng. Data, 49(1), 32 (2004)
  •  
  • 30. Semelsberger TA, Borup RL, Greene HL, J. Power Sources, 156(2), 497 (2006)
  •  
  • 31. Kim SH, Park YD, Kim SY, Macromol. Symp., 249-250, 515 (2007)
  •  
  • 32. Oh KS, Bae W, Kim H, Polymer, 48(6), 1450 (2007)
  •  
  • 33. Oh KS, Bae W, Kim H, Eur. Polym. J., 44, 415 (2008)
  •  
  • 34. Oh KS, Bae W, Lee YW, Kim HY, Ind. Eng. Chem. Res., 47(15), 5734 (2008)
  •  
  • 35. Lee SH, McHugh MA, Polymer, 38(6), 1317 (1997)
  •  
  • 36. Hasch BM, Lee SH, McHugh MA, J. Appl. Polym. Sci., 59(7), 1107 (1996)
  •  
  • 37. Kuk YM, Lee BC, J. Chem. Eng. Data, 46, 1344 (2001)
  •  
  • 38. Reid RC, Prausnitz JM, Poling BE, The Properties of Gases and Liquids, 4th Ed., McGraw-Hill, New York, 1987. (1987)
  •  
  • 39. Fukushima K, Kimura Y, Polym. Int., 55, 626 (2006)
  •  
  • 40. Kim J, Choi HJ, Lee DC, Yoon JS, Chin IJ, Lee KH, Polym.(Korea), 24(3), 358 (2000)
  •  
  • 41. Chun SW, Kim SH, Kim YH, Kang HJ, Polym.(Korea), 24(3), 333 (2000)
  •  
  • 42. Fan Y, Nishida H, Tokiwa Y, Endo T, Polym. Degrad. Stabil., 86, 197 (2004)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2015; 39(3): 453-460

    Published online May 25, 2015

  • 10.7317/pk.2015.39.3.453
  • Received on Sep 10, 2014
  • Accepted on Nov 9, 2014