• Preparation and Antibacterial Properties of Low Molecular Weight Silver Alginates
  • Shin CW, Lee BW, Choi SK
  • 저분자 은-알지네이트의 제조 및 항균특성
  • 신철화, 이봉우, 최수경
Abstract
To improve the antibacterial efficacy of alginates, the low molecular weight silver alginate (LMWSA) was produced by using depolymerized alginate obtained after electron beam irradiation. The particle size of silver alginates (SA) colloids ranged from 0.1 to 3.4 μm. All the low molecular weight silver alginates (LMWSA) particles showed a reduced growth of the germs tested compared with the control sample. The antibacterial effect of the LMWSA was considerably higher compared with silver-free high molecular weight alginates (HMWA) and low molecular weight alginates (LMWA). The silver-containing LMWSA showed, for example, a minimal inhibitory concentration (MIC) of about 350 ppm value and high antibacterial characteristics in E. coli, Staphylococuus aureus (S. aureus) and Propionebacterium acene (P.acene).

본 연구에서는 전자빔 조사에 의한 저분자 알지네이트의 항균 특성을 최대화하기 위해 여러 분자량의 은-알지네이트(SA)의 콜로이드 용액을 제조하였다. 제조된 입자의 크기 분포는 0.1~3.4 μm의 범위로 알지네이트의 분자량이 증가함에 따라 크기가 증가하는 경향을 보였으며 SA의 분자량이 작을수록 대장균, 포도상구균, 여드름균에 대한 항균특성이 우수함을 알 수 있었다. SA로 처리한 모든 시료에서 대조군에 비하여 시험균의 성장속도가 현저히 감소됨을 알 수 있다, 저분자 은-알지네이트는 고분자 알지네이트, 저분자 알지네이트보다 현저하게 높은 항균특성을 보이며 이들의 MIC 값은 대략 350 ppm이었다.

Keywords: low molecular weight silver alginate (LMWSA); antibacterial properties; particle size

References
  • 1. Bradford C, Freeman R, Percival SL, J. Am. Col. Cerif. Wound Spec., 1, 117 (2009)
  •  
  • 2. Ma C, Liu L, Hua W, Cai Y, Yao J, Fib. Polym., 16, 1255 (2015)
  •  
  • 3. Norajit K, Ryu GH, J. Food Process. Preserv., 35, 387 (2011)
  •  
  • 4. Wolcott RD, Rhoads DD, Bennett ME, Wolcott BM, Gogokhia L, Costerton JW, Dowd SE, J. Wound Care, 19, 52 (2010)
  •  
  • 5. Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH, Appl. Environ. Microbiol., 74, 2171 (2008)
  •  
  • 6. Wiegand C, Heinze T, Hipler UC, Wound Repair Regen., 17, 511 (2009)
  •  
  • 7. Beele H, Meuleneire F, Nahuys M, Percival SL, Int. Wound J., 7, 262 (2010)
  •  
  • 8. Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH, Appl. Environ. Microbiol., 74, 2171 (2008)
  •  
  • 9. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO, J. Biomed. Mater. Res., 52, 662 (2000)
  •  
  • 10. Wu Q, Zheng C, Ning ZX, Yang B, Int. J. Mol. Sci., 8(7), 670 (2007)
  •  
  • 11. Franz G, Alban S, Int. J. Biol. Macromol., 17, 311 (1995)
  •  
  • 12. Kim YH, Yoo YJ, Lee HY, Biotechnol. Lett., 17(3), 345 (1995)
  •  
  • 13. Gasesa P, Carbohydr. Polym., 8, 161 (1988)
  •  
  • 14. Qin Y, Polym. Adv. Technol., 19, 6 (2008)
  •  
  • 15. Shin CW, Choi SK, Appl. Chem. Eng., 25(2), 227 (2014)
  •  
  • 16. Choi SK, Choi YS, Polym. Korea, 35(5), 444 (2011)
  •  
  • 17. Jo BW, Choi SK, Carbohydr. Polym., 111, 822 (2014)
  •  
  • 18. Jo BW, Choi SK, Korea Patent 10-1148383 (2012).
  •  
  • 19. Sridhar KR, Vidyavathi N, Acta Hydrochim. Hydrobiol., 19, 455 (1995)
  •  
  • 20. Lee HS, Suh JH, KSBB J., 17, 63 (2002)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2016; 40(2): 258-264

    Published online Mar 25, 2016

  • 10.7317/pk.2016.40.2.258
  • Received on Oct 15, 2015
  • Accepted on Oct 28, 2015